Project description:We constructed mycolic acid synthesis key gene pks13 mutant strain and analyzed its impacts on whole cell at gene expression level compared to the wild-type ATCC13869.
Project description:Mycobacterium tuberculosis has a complex cell envelope that is remodelled throughout infection to respond and survive the hostile and variable intracellular conditions within the host. Despite the importance of cell wall homeostasis in pathogenicity, little is known about the environmental signals and regulatory networks controlling cell wall biogenesis in mycobacteria. The mycolic acid desaturase regulator (MadR) is a transcriptional repressor responsible for regulation of the essential aerobic desaturases desA1 and desA2 that are differentially regulated throughout infection along with mycolate modification genes and thus, likely involved in mycolic acid remodelling. Here we generated a madR null mutant in M. smegmatis that exhibited traits of an impaired cell wall with increased permeability, susceptibility to rifampicin and cell surface disruption as a consequence of desA1/desA2 dysregulation. Analysis of mycolic acids revealed the presence of a highly desaturated mycolate in the null mutant that exists in relative trace amounts in the wildtype, but increases in abundance upon cell surface disruption as a result of relieved repression on the desA1/desA2 promoters. Transcriptomic profiling confirmed MadR as a cell surface disruption responsive regulator of desA1/desA2 and further implicating it in the control of bespoke β-oxidation pathways and transport evolutionarily diversified subnetworks associated with virulence. In vitro characterisation of MadR using electromobility shift assays and analysis of binding affinities is suggestive of a unique acyl-CoA pool sensing mechanism, whereby MadR is able to bind a range of acyl-CoA but MadR repression of desA1/desA2 promoters is only relieved upon binding of saturated acyl-CoA of chain length C16-C24. We propose this acyl effector ligand mechanism as distinct to other regulators of mycolic acid biosynthesis or fatty acid desaturases and places MadR as the key regulatory checkpoint that coordinates mycolic acid remodelling in response to host derived cell surface perturbation
Project description:The mycobacterial cell wall is a distinctive thick layer that protects the tubercle bacillus from general antibiotics and the host’s immune system. Mycolic acids, which are long-chain α-alkyl-β-hydroxy fatty acids, are the major constituents of this protective layer, and their synthesis has been shown to be critical for the survival of M. tuberculosis. This model captures the mycolic acid pathway in M. tuberculosis with 197 metabolites participating in 219 reactions catalysed by 28 proteins. The model helps in the rational identification of potential anti-tubercular drug targets.
Project description:BackgroundFew studies have investigated the differences in clinical features of patients with mastitis following Corynebacterium kroppenstedtii infection, and most focused on the bacterial antimicrobial susceptibility, detection methods and therapy.MethodologyThere were 133 patients with mastitis infected by C. kroppenstedtii between August 2016 and September 2019. C. kroppenstedtii was identified using mass spectrometry. The demographics, clinical diagnosis, laboratory test results of different types of mastitis combined with bacillus infection, and the effects of different treatments in reducing recurrence were compared.ResultsThe incidence of pus following C. kroppenstedtii infection was higher in patients with non-granulomatous lobular mastitis (NGLM; 56.6%) than in those with granulomatous lobular mastitis (GLM; 33.3%; χ2 = 7.072, p = 0.008). While C-reactive protein (CRP) was higher in the GLM group (12.50 mg/L) than in the NGLM group (6.05 mg/L; Z = - 2.187, p = 0.029). Treatment with local lavage (triamcinolone acetonide) and antibiotics (cefuroxime) showed a recurrent rate of 25.9% in C. kroppenstedtii infection.ConclusionIncreased pus, large masses, and an elevated CRP level may occur in patients with mastitis infected by C.kroppenstedtii. These clinical features may guide the determination of the bacterial infection in patients with mastitis. Combining an antibiotic with a triamcinolone acetonide lavage, preferably cefuroxime, may reduce the recurrence.