Project description:We explored the transcriptomic changes of synthetic Brassica allohexaploid by comparing to its parents using a high-throughput RNA-Seq method. A total of 35644409 sequence reads were generated, and 32642 genes were aligned from the data. There were 29260, 29060 and 29697 genes identified in Brassica rapa, Brassica carinata, and Brassica allohexaploid, respectively. We screened differentially expressed genes (DEGs) by a standard of two-fold or greater change in expression and false discovery rate (FDR) no more than 0.001. As a result, 7397 DEGs were detected between Brassica hexaploid and its parents. A large proportion of the 3184 DEGs between Brassica hexaploid and its paternal parent B. rapa was involved in biosynthesis of secondary metabolites, plant-pathogen interaction, photosynthesis, and circadian rhythm. Between Brassica hexaploid and its maternal parent B. carinata, 2233 DEGs were screened. A lot of them had functions of plant-pathogen interaction, plant hormone signal transduction, ribosome, limonene and pinene degradation, photosynthesis, and also biosynthesis of secondary metabolites. In addition, we found many transcription factor genes, methyltransferase and methylation genes that showed differential expression between Brassica hexaploid and its parents. Leaf mRNA profiles of Brassica rapa, Brassica carinata, and Brassica allohexaploid
Project description:We explored the transcriptomic changes of synthetic Brassica allohexaploid by comparing to its parents using a high-throughput RNA-Seq method. A total of 35644409 sequence reads were generated, and 32642 genes were aligned from the data. There were 29260, 29060 and 29697 genes identified in Brassica rapa, Brassica carinata, and Brassica allohexaploid, respectively. We screened differentially expressed genes (DEGs) by a standard of two-fold or greater change in expression and false discovery rate (FDR) no more than 0.001. As a result, 7397 DEGs were detected between Brassica hexaploid and its parents. A large proportion of the 3184 DEGs between Brassica hexaploid and its paternal parent B. rapa was involved in biosynthesis of secondary metabolites, plant-pathogen interaction, photosynthesis, and circadian rhythm. Between Brassica hexaploid and its maternal parent B. carinata, 2233 DEGs were screened. A lot of them had functions of plant-pathogen interaction, plant hormone signal transduction, ribosome, limonene and pinene degradation, photosynthesis, and also biosynthesis of secondary metabolites. In addition, we found many transcription factor genes, methyltransferase and methylation genes that showed differential expression between Brassica hexaploid and its parents.
Project description:We present an atlas of global gene expression covering embryo and seed coat development in B. rapa, B. nigra, B. oleracea, B. juncea, B. napus and B. carinata, providing insights into the evolution of gene expression in embryogenesis and seed development of brassica species.
Project description:Analysis of the different gene expression profiles of natural and resynthesized Brassica polyploids with Illumina deep sequencing technology could help to improve our knowledge of polyploid genome evolution. We obtained approximately 6 million sequence tags per sample,and 6018254, 5930726, 6022170, 5950123, 5991210, 5798939, 5823113, 5772449,5858527 and 5657697 clean tags were obtained in libraries of B. rapa, B. oleracea, B. napus-F1, B. napus-F2, B. napus-F3, B. napus-F4, natural B. napus, B. nigra, B. juncea and B. carinata, respectively.16574, 15970, 22059, 18155, 16479, 18196, 17448, 13867, 19424 and 16645 genes of B. rapa genome were unambigously mapped by sequence tags of these ten DGE libraries, respectively. Differentially expressed genes during polyploidization were broadly discovered by comparing the tetraploids with their progenitors.
Project description:Analysis of the different gene expression profiles of natural and resynthesized Brassica polyploids with Illumina deep sequencing technology could help to improve our knowledge of polyploid genome evolution. We obtained approximately 6 million sequence tags per sample,and 6018254, 5930726, 6022170, 5950123, 5991210, 5798939, 5823113, 5772449,5858527 and 5657697 clean tags were obtained in libraries of B. rapa, B. oleracea, B. napus-F1, B. napus-F2, B. napus-F3, B. napus-F4, natural B. napus, B. nigra, B. juncea and B. carinata, respectively.16574, 15970, 22059, 18155, 16479, 18196, 17448, 13867, 19424 and 16645 genes of B. rapa genome were unambigously mapped by sequence tags of these ten DGE libraries, respectively. Differentially expressed genes during polyploidization were broadly discovered by comparing the tetraploids with their progenitors. mRNA obtained from young leaves of 28-days-old seedlings were compared during polyploidization.
Project description:Successful pollination brings together the mature pollen grain and stigma papilla to initiate an intricate series of molecular processes meant to eventually enable sperm cell delivery for fertilization and reproduction. At maturity, the pollen and stigma cells have acquired proteomes comprising the primary molecular effectors required upon their meeting. In Brassica species, knowledge of the roles and global composition of these proteomes is largely lacking. To address this gap, gel-free shotgun proteomics was performed on the mature pollen and stigma of Brassica carinata, a representative of the Brassica family and its many crop species (e.g. B. napus, B. oleracea, B. rapa), which holds considerable potential as a bio-industrial crop. 5608 and 7703 B. carinata mature pollen and stigma proteins were identified, respectively. The pollen and stigma proteomes were found to reflect not only their many common functional and developmental objectives, but also important differences underlying their cellular specialization. Isobaric tag for relative and absolute quantification (iTRAQ) was exploited in the first analysis of a developing Brassicaceae stigma, and uncovered 251 B. carinata proteins that were differentially abundant during stigma maturation, providing insight into proteins involved in the initial phases of pollination.
Project description:The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. Deep RNA-Seq of two Brassica rapa genotypesâR500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)âusing eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. In this experiment, two pools were made, with one pool consisting of 66 samples collected from growth chamber and another pool consisting of 60 samples collected from greenhouse and field. Each pool was sequenced on eight lanes (total 16 lanes) of an Illumina Genome Analyzer (GAIIx) as 100-bp paired end reads.
Project description:Among Brassica rapa, rapid cycling Brassica rapa and Brassica rapa inbred line Kenshin showed contrasting leaf morphology. To identify genes associated with leaf morphology, four distinct F2 progeny of RcBr X Kenshin cross and their parents were selected. Leaf samples were collected from 6 materials, isolated total RNA, and subjected to newly developved 135K microarray. Experiments were performed with three or two biologic