Project description:Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Coniferiporia sulphurascens and Coniferiporia weirii, two well-defined and distinguishable fungal species of the family Hymenochaetaceae. The pathogens are regulated in Council Directive 2000/29/EC (Annex IAI, under the previous name Inonotus weirii for both species) as a harmful organism whose introduction into the EU is banned. The two pathogens are native to North America, where C. sulphurascens causes laminated root rot primarily in Douglas fir (Pseudotsuga menziesii) and grand fir (Abies grandis), while C. weirii causes cedar laminated root and butt rot mainly in cedars (Thuja plicata and Cupressus nootkatensis). C. weirii has been reported from Japan and China, and C. sulphurascens from China, Russia and Turkey. Neither species has been reported from the EU. C. sulphurascens may infect all conifers, while C. weirii is reported to mainly cause disease in tree species of Thuja spp. and Cupressus spp. The two pathogens could enter the EU mainly via wood with bark, isolated bark and plants for planting (including artificially dwarfed plants) of Pinaceae and Cupressaceae. Both fungi could establish in the EU, as hosts are present and climatic conditions are favourable. The two pathogens would be able to spread following establishment by the pathways mentioned for entry and also by dissemination of basidiospores and root contact with infected root/wood. Should the pathogen be introduced in the EU, impacts can be expected on coniferous woodlands, plantations and ornamental trees, thus leading to reduced tree growth and ecosystem service provision. The key uncertainties concern (i) the distribution of the two pathogens in Asia, (ii) the level of susceptibility of conifers native to Europe and (iii) the role of plants for planting as a pathway of entry and spread. For both pathogens, the criteria assessed by the Panel for consideration as a potential quarantine pest are met. As the two pests are not present in the EU, not all the criteria for consideration as regulated non-quarantine pests are met.
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed.
Project description:Background: Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results: To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions: The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high.
Project description:Background: Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results: To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions: The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high. Detection of gene expression variance among Frankia HfpCci3 (Cci3) cells grown in ammonium chloride for three days, five days and HfpCci3 cells grown in nitrogen fixing conditions for three days using mRNA-seq
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed. A two chip study using total RNA recovered from wild-type and motile strains of Sphingomonas. sp A1 grown in 0.5% alginate medium.