Project description:We illustrate how metabolically distinct species of Clostridia can protect against or worsen Clostridioides difficile infection, modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survived infection while mice colonized with the butyrate-producer, Clostridium sardiniense, more rapidly succumbed. Systematic in vivo analyses revealed how each commensal altered the gut nutrient environment, modulating the pathogen's metabolism, regulatory networks, and toxin production. Oral administration of P. bifermentans rescued conventional mice from lethal C. difficile infection via mechanisms identified in specifically colonized mice. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biologic approaches to define host-commensal-pathogen interactions in vivo.
Project description:The Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. The aim of this project was to explore the effects of the toxins on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. RNA-seq of toxin-treated intestinal cell monolayers was performed to describe the C. difficile-mediated effects. mRNA profiles from intestinale epithelial cells were generated by deep sequencing using Illumina NovaSeq 6000. This data provide the basis for subsequent upstream regulator analysis.
Project description:The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is key in establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In media with CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism.