Project description:Transcriptional profiling of the mantle tissue across the four stages of female gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of the mantle tissue across the four stages of male gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of the mantle tissue across the four stages of female gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Mantle tissue from individual animals in different gonad maturation stages were analyzed in a complete loop design. Dual color competitive hybridizations (stage 4 vs stage 1, 2 vs 1, 3 vs 2, 4 vs 3) including label swap. Single individuals. Four biological replicates. One replicate per array.
Project description:Transcriptional profiling of the mantle tissue across the four stages of male gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the M-bM-^@M-^\hotM-bM-^@M-^] months (MayM-bM-^@M-^SAugust) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Mantle tissue from individual animals in different gonad maturation stages were analyzed in a complete loop design. Dual color competitive hybridizations (stage 4 vs stage 1, 2 vs 1, 3 vs 2, 4 vs 3) including label swap. Single individuals. Four biological replicates. One replicate per array.
Project description:Mediterranean mussels are a worldwide spread bivalve species with extraordinary biological success. One of the reasons of this success could be the reproduction strategy of bivalves, characterized by the presence of trochophore larvae. Larval development in bivalves has been a topic of raising interest in the scientific community but it deserves much more attention. The principal objective of this work was to study the transcriptomic profile of the ontogeny of M. galloprovincialis analyzing the gene expression in different developmental stages, from oocytes to seed. For this purpose, after conducting a 454 sequencing of transcriptome of mussel hemocytes, adult tissues and larvae, a new DNA microarray comprising sequences of was designed and developed. The studied developmental stages: unfertilized oocytes, veliger (3 days post fertilization; dpf) and pediveliger (20dpf) larvae, settled juveniles (25dpf) and seed (30dpf), showed very different transcriptomic profiles and clustered in groups defining their characteristic gene expression along ontogeny.
Project description:Ecotoxicological risk assessment for the herbicide glyphosate and its degradation product AMPA: analysis of host and microbiota response in the mussel Mytilus galloprovincialis
Project description:Transcriptional profiling of natural population of mussels (Mytilus galloprovincialis) -digestive gland tissue- comparing female individuals sampled in the Bizerta Lagoon, Tunisia, across May 2007 - April 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:The present work sought first to identify the impacts of increasing water temperatures on M. galloprovincialis and M. edulis pure larvae and their hybrids on embryo larval development. Second, based on a recently developed targeted Mussel’s microarray, we investigated the transcriptional response to elucidate possible differences in heat stress-induced gene expression between these species.
Project description:Direct comparison of the transcriptional patterns between male and female in the digestive gland of a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -February March 2008 (four stages, winter peak). Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the Digestive gland (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.