Project description:Expression of the extensive arsenal of virulence factors by Streptococcus pyogenes are controlled by many regulators, of which covR/S is one of the best characterized and can influence ~15% of the genome. Animal models have established that mutants of CovR/S arise spontaneously in vivo resulting in highly invasive organisms. We analyzed a pharyngeal and a blood isolate of S. pyogenes recovered from the same individual 13 days apart. The two isolates varied in many phenotypic properties including speB production, which were reflected in transcriptome analyses. Pulsed field gel electrophoresis, multilocus sequence typing, and partial sequencing of some key genes failed to show any differences except for an 11-base insert in the covS gene in the blood isolate. These results showing that pharyngeal and blood isolates from a single individual which differ by a simple insertion, provide evidence for the model that regulatory gene mutations allow S. pyogenes to invade different niches in the body. A chip study using total RNA recovered from two separate wild-type cultures of group A Streptococcus, Streptococcus pyogenes UH322 and UH328. Each chip measures the expression level of 1865 genes replicated twice from 7 fully sequenced strains of Streptococcus pyogenes (M1_GAS NC_002737; MGAS10394 NC_006086; MGAS315 NC_004070; MGAS5005 NC_007297; MGAS6180 NC_007296; MGAS8232 NC_003485; SSI-1 NC_004606 with fourteen 24-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:Whole genone expression profile comparing wild-type NZ131 to serR deletion mutant, grown in C-medium Mutants and interpretation are described further in the manuscript to be submitted: LaSarre and Federle, 2010. Title: Regulation and Consequence of Serine Catabolism in Streptococcus pyogenes. A two chip study using total RNA recovered from three separate wild-type cultures of Streptococcus pyogenes NZ131 and three separate mutant cultures of Streptococcus pyogenes NZ131 seR-, pooled following RNA extraction
Project description:Expression of the extensive arsenal of virulence factors by Streptococcus pyogenes are controlled by many regulators, of which covR/S is one of the best characterized and can influence ~15% of the genome. Animal models have established that mutants of CovR/S arise spontaneously in vivo resulting in highly invasive organisms. We analyzed a pharyngeal and a blood isolate of S. pyogenes recovered from the same individual 13 days apart. The two isolates varied in many phenotypic properties including speB production, which were reflected in transcriptome analyses. Pulsed field gel electrophoresis, multilocus sequence typing, and partial sequencing of some key genes failed to show any differences except for an 11-base insert in the covS gene in the blood isolate. These results showing that pharyngeal and blood isolates from a single individual which differ by a simple insertion, provide evidence for the model that regulatory gene mutations allow S. pyogenes to invade different niches in the body.
Project description:Whole genome expression profile comparing MGAS315 treated with XIP pheromone versus vehicle-treated cells Interpretations are described further in the manuscript to be submitted: authors Mashburn-Warren, Morrison, and Federle. Title: The Cryptic Competence Pathway in Streptococcus pyogenes is Controlled by a Peptide Pheromone. A two chip study using total RNA recovered from three separate cultures of Streptococcus pyogenes MGAS315, each treated with either XIP pheromone or with vehicle; RNA preparation of cultures receiving same type of treatment were pooled using equivalent amounts of RNA from each culture. RNA pools were fluorescently labeled and hybridized to arrays designed to the S. pyogenes NZ131 genome.
Project description:In Streptococcus pyogenes, mutation of GidA results in avirulence despite the same growth rate as the wild type. To understand the basis of this effect, global transcription profiling was conducted. Keywords: Wild type vs. GidA mutant Streptococcus pyogenes
Project description:Transcriptional profiling of Streptococcus pyogenes MGAS5005 cells comparing control untreated GAS cells with GAS cells exposed to 4uM heme for 1.5 h
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to Streptococcus pyogenes strains 5448, SP444, HKU419, PS003 and PS006.
Project description:Streptococcus pyogenes (Group A streptococcus, GAS) is an important human pathogen that causes a variety of infectious diseases and sequelae. Recent studies showed virulence factor expression was controlled at multiple levels, including the post-transcriptional regulation. In this study, we examined the global half-lives of S. pyogenes mRNAs and explored the role RNase Y played in mRNA metabolism with microarray analysis. key word: genetic modification Streptococcus pyogenes NZ131 wild-type cells and ?rny strains were grown in C-medium until late exponential phase. Rifampicin was added to the cell culture and samples were collected before and after rifampicin addition. The transcriptional profile of the whole genome before and after rifampicin addition was examined with microarray. Please note that mRNA decay assay resulted in considerable variations in the datasets. Samples were taken after rifampicin addition and subsequent incubation for different time intervals. During that time no new RNA is produced and the remaining RNA is degraded to various degrees.