Project description:The human intestinal microbiota associated with rats produces in vivo a soluble(s) factor(s) that down-regulates the expression of genes encoding for the Shiga toxin II in E. coli O157:H7. The Shiga toxin II is one of the major virulence factors of E. coli enterohemorragic leading to the deadly hemolitic and uremic syndrome. Investigation of the effect of the human intestinal microbiota on the whole transcriptome of EHEC O157:H7 is of major importance to increase our understanding of the pathogen transcriptomic adaptation in response to the human microbiota. We analysed by microarray hybridization the gene expression pattern of EHEC O157:H7 grown in the caecal content of germ-free rats or rats associated with the human microbiota of a healthy human subject. By doing so, we increased our understanding of the regulatory activities of the human gut microbiota on E. coli O157:H7
Project description:Transcriptomes of 24 clinical strains of E. coli O157:H7 that differ phylogenetically and by Shiga toxin profiles were compared after 30 min co-incubation with epithelial cells.
Project description:The effect of pooled immunoglobulins (IgG) on E. coli O157:H7 colonization and the course of disease in an EHEC mouse model was investigated showing an improved survival and decreased intestinal and renal pathology. Treatment was given after inoculation thereby corresponding to the clinical setting. In vitro studies identified E. coli serine protease EspP as the E. coli O157:H7 protein that IgG bound to, via the Fc fragment, in both murine and human IgG preparations, and blocked its enzymatic activity. EspP is a virulence factor previously shown to promote colonic cell injury and the uptake of Shiga toxin by intestinal cells. The results suggest that IgG in commercial preparations binds to EspP protecting the host from E. coli O157:H7 infection and could potentially be beneficial in patients.
Project description:The human intestinal microbiota associated with rats produces in vivo a soluble(s) factor(s) that down-regulates the expression of genes encoding for the Shiga toxin II in E. coli O157:H7. The Shiga toxin II is one of the major virulence factors of E. coli enterohemorragic leading to the deadly hemolitic and uremic syndrome. Investigation of the effect of the human intestinal microbiota on the whole transcriptome of EHEC O157:H7 is of major importance to increase our understanding of the pathogen transcriptomic adaptation in response to the human microbiota. We analysed by microarray hybridization the gene expression pattern of EHEC O157:H7 grown in the caecal content of germ-free rats or rats associated with the human microbiota of a healthy human subject. By doing so, we increased our understanding of the regulatory activities of the human gut microbiota on E. coli O157:H7 A first group of twelve weeks old, male, germfree rats was colonized with the human fecal microbiota and a second group was kept germfree and condidered as a controle group. Rats were fed for two weeks with a sterile human type diet, and were sacrificed. E. coli O157:H7 was cultivated for 6 hours in the caecal content of germfree rats and rats associated with the human intestinal microbiota. RNAs were extracted and cDNAs were synthesized, fragmented and biotinylated before being hybridized on Affymetrix E. coli genome 2.0 arrays. The effect of the human intestinal microbiota was investigated by comparing the gene expression level in the caecal content of rats associated with the human microbiota with their expression level in the caecal content of the germfree rats.
Project description:Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a notorious foodborne pathogen capable of causing severe gastrointestinal infections in humans. The bovine rectoanal junction (RAJ) has been identified as a primary reservoir of STEC O157:H7, playing a critical role in its transmission to humans through contaminated food sources. Despite the relevance of this host-pathogen interaction, the molecular mechanisms behind the adaptation of STEC O157:H7 in the bovine RAJ and its subsequent infection of human colonic epithelial cells remain largely unexplored. This study aimed to unravel the intricate dynamics of STEC O157:H7 in two distinct host environments: bovine RAJ squamous epithelial (RSE) cells and human colonic epithelial cells. Comparative transcriptomics analysis was employed to investigate the differential gene expression profiles of STEC O157:H7 during its interaction with these cell types. The bacterial cells were cultured under controlled conditions to simulate the microenvironments of both bovine RAJ and human colonic epithelial cells. Using high-throughput RNA sequencing, we identified key bacterial genes and regulatory pathways that are significantly modulated in response to each specific host environment. Our findings reveal distinct expression patterns of virulence factors, adhesion proteins, and stress response genes in STEC O157:H7 grown in bovine RAJ cells as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlights the potential role of certain genes in host adaptation and tissue-specific pathogenicity. Furthermore, this study sheds light on the potential factors contributing to the survival and persistence of STEC O157:H7 in the bovine reservoir and its ability to colonize and cause disease in humans.
Project description:The existence of two separate lineages of Escherichia coli O157:H7 has previously been reported, and research indicates that one of these lineages (lineage I) might be more pathogenic towards human hosts. We have previously shown that the more pathogenic lineage expresses higher levels of Shiga toxin 2 (Stx2) than the non-pathogenic lineage II. To evaluate why lineage 2 isolates do not express appreciable levels of toxin, two lineage 2 isolates (FRIK966 and FRIK2000) were chosen as representatives of lineage 2 and whole genome microarrays were performed using Agilent microarrays using the E. coli O157:H7 EDL933 lineage I clinical type isolate as a reference. Microarray results were utilized to evaluate what genes and pathways might be missing or differentially expressed. Quantitative RT-PCR was utilized to validate the microarray data.
Project description:Pathogenic biofilms have been associated with persistent infections due to high resistance to antimicrobial agents while commensal biofilms often fortify host immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacteria-related diseases. We investigated the effect of plant flavonoids on biofilm formation of both enterohemorrhagic Escherichia coli O157:H7 and three commensal E. coli K-12 strains. Phloretin abundant in apples markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx2), autoinducer-2 importer genes (lsrACDBF), a curli gene (csgA), and a dozens of prophage genes in E. coli O157:H7 cells. Electron microscopy confirmed that phroretin reduced the curli production in E. coli O157:H7. In addition, phloretin suppressed TNF-α-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that phloretin may act as an inhibitor of E. coli O157:H7 biofilm formation as well as anti-inflammatory agent on inflammatory bowel diseases while leaving beneficial commensal E. coli biofilm intact.
Project description:Escherichia coli O157:H7 strains have been classified into different genotypes based on the presence of specific shiga toxin-encoding bacteriophage insertion sites. Genotypes that are predominant in clinical isolates are named clinical genotypes and those that are isolated mostly from bovine sources are bovine-biased genotypes. To determine whether inherent differences in gene expression could possibly explain the variation in infectivity of these genotypes, we compared the expression patterns of O157:H7 strains isolated from cattle, which belonged to either clinical genotype 1 or bovine-biased genotype 5. Important virulence factors of O157, including locus of enterocyte effacement, enterohemolysin, and pO157 plasmid encoded genes, showed increased expression in clinical genotype. Genes essential for acid resistance such as gadA, gadB, and gadC and other stress fitness-associated genes were up-regulated in the bovine-biased genotype 5. Overall, these results suggest that clinical genotype 1 strains more commonly cause human illness because of an enhanced ability to express O157 virulence factors known to be important for disease pathogenesis. By contrast, strains of the bovine-biased genotype 5 appear to be more resistant to adverse environmental conditions, which enable them to survive well in bovines without causing disease.
Project description:In order to explore the differentially expressed genes of E. coli O157: H7 after citric acid induced antibiotic tolerance, we artificially induced the antibiotic tolerance of E. coli O157: H7 and verified its phenotype.
Project description:Escherichia coli is a diverse species of bacteria. Some isolates of E. coli can cause hemorrhagic uremic syndrome in humans through consumption of contaminated food. We hypothesize that secreted and surface-associated proteins in E. coli may contribute to bacterial persistence in food products and to pathogenicity in humans. Here we report the proteomic analyses of secretomes from two serotypes of E. coli, O157:H7 and O104:H4, that cause human foodborne illness. The secreted proteins were isolated from the liquid cultures and analyzed by liquid chromatography-tandem mass spectrometry. We report 57 secreted proteins for O157:H7 and 67 for O104:H4 with increased abundance in minimal medium. As signature proteins, O157:H7 expressed intimin and translocated intimin receptor. By contrast, O104:H4 expressed enteroaggregative fimbriae, serine protease autotransporters, Shiga toxin, and beta-lactamase. The E. coli O104:H4 released more cytosolic proteins into the culture media than the O157:H7 serotype, indicating that it might be a leaky strain. The differential abundance of two transpeptidases YbiS and YnhG, along with other lipoproteins in O157:H7 indicates that this serotype secretes several peptidol-lipoprotein components of biofilm. In addition, we observed differential abundance of several ABC transporters, proteases and lipoproteins, which give each strain a unique survival strategy and drug resistance. The identification of secreted proteins will enable us understand better how these bacteria persist in food products and cause human disease.