Project description:Investigation of whole genome expression level changes in Bacillus anthracis Sterne deltaClpX mutant compared to the wild-type strain after growth in nutrient rich media. The deltaClpX mutant used in this study is described in McGillivray et al. 2009. ClpX Protease Contributes to Antimicrobial Peptide Resistance and Virulence Phenotypes of Bacillus anthracis. Journal of Innate Immunity 1(5): 494-506.
Project description:Bacillus anthracis causes anthrax infections in mammals. Large-scale mortality resulting from the intentional release of B. anthracis spores represents a potential bioterrorism threat. Inhalational anthrax almost invariably proceeds to fatal systemic infection, characterized by massive bacteremia. A better understanding of host-pathogen interactions is urgently needed for effective treatment of this lethal disease. However, virulence mechanisms used by B. anthracis to survive and multiply in human blood are not completely understood. Identification of genes that are differentially expressed during the growth of B. anthracis in human serum can elucidate how this pathogen successfully colonizes the bloodstream. We compared the transcriptional profile of B. anthracis growing in heat-inactivated human serum to that in LB medium. Genes involved in the biosynthesis of purines, certain amino acids and riboflavin and lipid metabolism, genes encoding ABC transporters, respiratory enzymes and several genes with hypothetical function were identified as being upregulated during growth in serum.
Project description:The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray gene profiling and gene enrichment analysis to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 hours post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 hours and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1β (4 hours), CXCL8/IL-8 (4 and 24 hours) and CXCL5/ENA-78 (24 hours). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL3/GROββ and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure, and contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax. We used microarrays to create a whole transcriptomic description of the response of primary human type I alveolar epithelial cells to B. anthracis spore exposure and demonstrated that several of the most upregulated differentially expressed genes included those for neutrophil and monocyte chemokines.