Project description:Praying mantids are important models for studying a wide range of chromosome behaviors, yet few species of mantids have been characterized chromosomally. Here we show that the praying mantid Hierodula membranacea has a chromosome number of 2n = 27, and X1X1X2X2 (female): X1X2Y (male) sex determination. In male meiosis I, the X1, X2, and Y chromosomes of H. membranacea form a sex trivalent, with the Y chromosome associating with one spindle pole and the X1 and X2 chromosomes facing the opposite spindle pole. While it is possible that such a sex trivalent could experience different spindle forces on each side of the trivalent, in H. membranacea the sex trivalent aligns at the spindle equator with all of the autosomes, and then the sex chromosomes separate in anaphase I simultaneously with the autosomes. With this observation, H. membranacea can be used as a model system to study the balance of forces acting on a trivalent during meiosis I and analyze the functional importance of chromosome alignment in metaphase as a preparatory step for subsequent correct chromosome segregation.
Project description:The presence of the Indochina mantis Hierodula patellifera (Mantidae, Mantinae) as a new alien species in Italy is reported, with the description of the first stable macro-population in Europe. This macro-population shows a wide distribution, comprising several fragmented and reproducing sub-populations in Northern Italy and one in Southern France. Specimens and individuals were collected or observed on trees and ornamentals in urban ecosystems with the help of citizen science. A spatial analysis (Average Nearest Neighbour) was undertaken to characterise the present distribution pattern, evidencing the hot spots of arrival and the local spreading process. The random pattern of presence in the local urban textures and the resistance of this species to the challenging North Italian climate, are here discussed in the perspective of a future expansion to central and Northern Europe, using probably the main railways to arrive at depots and cities, travelling with Asian goods. Identification characters are also presented to separate this alien species from the other species of the subfamily Mantinae, native or introduced, present in Europe.
Project description:Polyurethane (PU), currently replacing existing synthetic materials worldwide, is a synthetic polymer derived from polyols, isocyanates, and a chain extender added by condensation reactions. PU wastes which are difficult to recycle, are commonly discarded in landfills and flow into ecosystems, thereby causing serious environmental problems. In recent years, insect-associated microbes have become a promising, eco-friendly strategy as an alternative to plastic recycling. This study aimed to evaluate the potential of Serratia sp. HY-72 strain isolated from the intestine of the Asian mantis (Hierodula patellifera) for PU degradation. The 65 kDa family I.3 lipase which degrades PU was identified and characterized, with a specific activity of 2,883 U mg−1. The bacterial filtrates and the recombinant lipase degraded Impranil (a colloidal polyester-PU dispersion, 100 g l−1) by 85.24 and 78.35% after 72 h incubation, respectively. Fourier transform infrared spectroscopy analysis revealed changes in Impranil functional groups, with decreased C=O functional group and aliphatic chain signals, and increased N-H bending with C-N stretching and C-O stretching. The current study also revealed that the HY-72 strain biodegraded the commercial PU foams (polyester- and polyether- PU) with 23.95 and 10.95% weight loss after 2 weeks, respectively with changes in surface morphology and structure such as cracks, roughness, and surface roughening. Altogether, this is one of the few studies reporting biodegradation of PU by the insect-associated microbe. These findings suggest that the insect-associated microbe could be a promising resource for biodegradation and recycling of plastic waste.
Project description:Background:Originally from Asia, Hierodula patellifera (Serville, 1839) occurs several Mediterranean countries, such as Italy. These arrivals could come from many factors: new pets or commercial human transport. New information:The presence of Hierodula patellifera (Serville, 1839) is here reported for the first time in France. A well settled and probably widespread population of this species is here discussed as its adaptability to the Mediterranean climate. Some considerations on the potential impacts on the local ecosystems and its future spreading in Europe as an invasive species are given.