Project description:Experimental infection of (2 days old) adult honey bee workers (30 bees per replicates, 3 replicates per treatments, from 3 different colonies (one colony per cage for each treatment)) with 10^9 genome equivalent of Black Queen Cell Virus (BQCV) in 10µl of sugar solution and/or 10^5 fresh Nosema ceranae spores (control bees were given a similar bee extract in PBS, without pathogen). Bees were kept in cages of 30 bees in incubator (30°C/50%RH). At day 13 p.i., bees were flash frozen, and stored at -80°C. Brain mRNA profiles of 15 old bees were generated by deep sequencing, in triplicates except for bees infected by both Nosema ceranae and Black Queen Cell Virus (duplicates)
Project description:Experimental infection of (2 days old) adult honey bee workers (30 bees per replicates, 3 replicates per treatments, from 3 different colonies (one colony per cage for each treatment)) with 10^9 genome equivalent of Black Queen Cell Virus (BQCV) in 10µl of sugar solution and/or 10^5 fresh Nosema ceranae spores (control bees were given a similar bee extract in PBS, without pathogen). Bees were kept in cages of 30 bees in incubator (30°C/50%RH). At day 13 p.i., bees were flash frozen, and stored at -80°C.
Project description:Rice black streak dwarf virus (RBSDV) is the causal agent of rice black streak dwarf disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RBSDV infection.
Project description:Rice black streak dwarf virus (RBSDV) is the causal agent of rice black streak dwarf disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RBSDV infection. Comparison between RBSDV and mock infected rice. Biological replicates: 3 control, 3 infected, independently grown and harvested. 1 samples derived from 5 plants grown under same conditons
Project description:Black queen cell virus (BQCV) is a ubiquitous honeybee virus and a significant pathogen to queen bee (Apis mellifera) larvae. However, many aspects of the virus remain poorly understood, including the transmission dynamics. In this study, we used next-generation sequencing to identify BQCV in Aedes vexans (n = 4,000) collected in 2019 and 2020 from Manitoba, Canada. We assembled de novo the nearly complete (>96%) genome sequence of the virus, which is the first available from North America and the first report of BQCV being harbored by mosquitoes. Phylogenetic tree reconstructions indicated that the genome had 95.5% sequence similarity to a BQCV isolate from Sweden. Sequences of a potential vector (Varroa destructor) and a microsporidian associated with BQCV (Nosema apis) were not identified in the mosquito samples, however, we did detect sequences of plant origin. We, therefore, hypothesize that the virus was indirectly acquired by mosquitoes foraging at the same nectar sources as honeybees.