Project description:Soil microorganisms carry out decomposition of complex organic carbon molecules, such as chitin. High diversity of the soil microbiome and complexity of the soil habitat has posed a challenge to elucidate specific interactions between soil microorganisms. Here, we overcame this challenge by studying a model soil consortium (MSC-2) that is composed of 8 species. The MSC-2 isolates were originally obtained from the same soil that was enriched with chitin as a substrate. Our aim was to elucidate specific roles of the 8 member species during chitin metabolism in soil. The 8 species were added to sterile soil with chitin and incubated for 3 months. Multi-omics was used to understand how the community composition, transcript and protein expression and chitin-related metabolites shifted during the incubation period. The data clearly and consistently revealed a temporal shift during chitin decomposition and defined contributions by individual species. A Streptomyces species was a key player in early steps of chitin decomposition, followed by other members of MSC-2. These results illustrate how multi-omics applied to a defined consortium untangles complex interactions between soil microorganisms.