Project description:We have employed whole genome microarray expression to distinguish the effect of diversely functionalized magnetic silica nanoparticles on human HepaRG cells. Cells were exposed in vitro, and datasets of differentially expressed genes were identified for NPs versus control samples.
Project description:Gold nanoparticles (Au NPs) are uniquely suited for various biomedical applications due to the combination of their optical properties with their easily functionalized surfaces. The Au NP surface can be tailored to improve biocompatibility while also attaching targeting ligands or drugs. However, information on how these tailored surface chemistries may affect cell gene expression is scarce. Using two model human cells line, human dermal fibroblasts and prostate cancer cells, microarray experiments measured gene expression over 27,000 human genes. Each of the cell lines was exposed to four related types of surface-modified Au NPs at two different concentrations, and the microarray data was analyzed by weighted gene correlation network analysis and gene functional annotation. Au NPs were shown to affect genes associated with a variety of cellular functions, and surface charge and chemistry were linked with the types of parthways changed and the degree of which those changes occured. Nanoparticle induced gene expression in PC3 and HDF cells was measured after 24 hour exposure to nanoparticles of four different surface coating types. RNA from three separate culture samples were used for each nanoparticle-cell combinations, along with three control samples not exposed to nanoparticles at all.
Project description:We report the gene expression profile in BV2 murine microglia cell line after treatment of silica coated magnetic nanoparticles with low dose (0.01 µg/µl) and high dose (0.1 µg/µl) for 12 h.
Project description:Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells. We used microarrays to detail the global programme of gene expression underlying the cellular malignant transformation induced by amorphous silica nanoparticles and identified distinct classes of up-regulated and down-regulated genes during this process. The human lung epithelial cells, Beas-2B were continuously exposed to 5 μg/mL amorphous silica nanoparticles for 40 passages, and named as BeasSiNPs-P40 (shortly as P40-5 during the further microarray detection). Meanwhile, the passage-matched control Beas-2B cells, named as Beas-P40 (shortly as NC during the further microarray detection).
Project description:Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells. We used microarrays to detail the global programme of gene expression underlying the cellular malignant transformation induced by amorphous silica nanoparticles and identified distinct classes of up-regulated and down-regulated genes during this process.
Project description:Gold nanoparticles (Au NPs) are uniquely suited for various biomedical applications due to the combination of their optical properties with their easily functionalized surfaces. The Au NP surface can be tailored to improve biocompatibility while also attaching targeting ligands or drugs. However, information on how these tailored surface chemistries may affect cell gene expression is scarce. Using two model human cells line, human dermal fibroblasts and prostate cancer cells, microarray experiments measured gene expression over 27,000 human genes. Each of the cell lines was exposed to four related types of surface-modified Au NPs at two different concentrations, and the microarray data was analyzed by weighted gene correlation network analysis and gene functional annotation. Au NPs were shown to affect genes associated with a variety of cellular functions, and surface charge and chemistry were linked with the types of parthways changed and the degree of which those changes occured.
Project description:To identify key biological pathways that define toxicity or biocompatibility after nanoparticle exposure, three human cell types were exposed in vitro to two high aspect ratio nanoparticles for 1 hr or 24 hr and collected for global transcriptomics. Transcriptional responses were measured by global microarray analysis of cells in culture. Groups (N=3 biological replicates) of SAE cells exposed to 0, 10 or 100 ug/ml MWCNT or TiO2-NB nanoparticles for 1 or 24 hr.
Project description:To identify key biological pathways that define toxicity or biocompatibility after nanoparticle exposure, three human cell types were exposed in vitro to two high aspect ratio nanoparticles for 1 hr or 24 hr and collected for global transcriptomics. Transcriptional responses were measured by global microarray analysis of cells in culture. Groups (N=3 biological replicates) of Caco-2/HT29-MTX cells exposed to 0, 10 or 100 ug/ml MWCNT or TiO2-NB nanoparticles for 1 or 24 hr.