Project description:Acetic acid bacteria are obligately aerobic alphaproteobacteria that have a unique ability to incompletely oxidize various alcohols and sugars to organic acids. The ability of these bacteria to incompletely oxidize ethanol to acetate has been historically utilized for vinegar production. The mechanism of switching between incomplete oxidation and assimilatory oxidation and the control of energy and carbon metabolism in acetic acid bacteria are not fully understood. To understand the physiology and molecular biology of acetic acid bacteria better, we determined the draft genome sequence of Acetobacter aceti NBRC 14818, which is the type strain of the genus. Based on this draft genome sequence, the transcriptome profiles in A. aceti cells grown on ethanol, acetate, glucose, or mix of ethanol and glucose was determined by using NimbleGen Prokaryotic Expression array (4x72K).
Project description:The Atlantic killifish (Fundulus heteroclitus) is an ideal model species to study physiological and toxicological adaptations to stressors. Killifish inhabiting the PCB-contaminated Superfund site in New Bedford Harbor, MA (NBH) have evolved resistance to toxicity and activation of the aryl hydrocarbon receptor (AHR) signaling pathway after exposure to PCBs and other AHR agonists. Until recently, a lack of genomic information has limited efforts to understand the molecular mechanisms underlying environmental adaptation to stressors. The advent of high throughput sequencing has facilitated an unbiased assessment of coding as well as non-coding RNAs in any species of interest. Among non-coding RNAs, microRNAs (miRNAs) are important regulators of gene expression and play crucial roles in development and physiology. The objective of this study is to catalog the miRNAs in killifish and determine their expression patterns in the embryos from contaminated (NBH) and pristine (Scorton Creek, MA (SC)) sites. Embryos from NBH and SC were collected daily from 1 to 15 days post-fertilization and RNA from pooled samples from each site was sequenced using SOLiD sequencing. We obtained 7.5 and 11 million raw reads from pooled SC and NBH samples, respectively. Analysis of the sequencing data identified 216 conserved mature miRNA sequences that are expressed during development. Using the draft killifish genome, we retrieved the miRNA precursor sequences. Based on the capacity of these putative precursor sequences to form the characteristic hairpin loop (assessed using RNAfold), we identified 197 conserved miRNA sequences in the genome.
Project description:While a first draft of the equine genome is available and predictions are made regarding resulting genes and proteins, little is known about the actual transcriptome. So far, published expressed sequence tags (ESTs) from different horse tissues were generally rather short (?600bp) and hardly annotated, reflecting the problem that good cDNA libraries are very difficult to analyse. In this approach, we aimed to establish and analyse a normalised immune cell cDNA library (using freshly isolated and activated lymphocytes, NK cells, monocytes and DC). In particular, we wanted to test next generation sequencing combined with a series of bioinformatic approaches. The resulting cDNA library contained 2x107 clones of which 1056 were used for an initial Sanger sequencing and 4x106 for the deep sequencing analysis. Through the latter we obtained >29k sequences for which more than 5000 matches where found on the equine reference sequences. Additionally we could identify more than 3500 sequences which had matches on both - non-equine RNA sequences as well as the equine genome. In these we find both extensions of existing RefSeq models and novel mRNAs alike. Less than 2% of sequences did not have any match in the mentioned databases. 1 pooled set of samples from one animal analysed
Project description:While a first draft of the equine genome is available and predictions are made regarding resulting genes and proteins, little is known about the actual transcriptome. So far, published expressed sequence tags (ESTs) from different horse tissues were generally rather short (≤600bp) and hardly annotated, reflecting the problem that good cDNA libraries are very difficult to analyse. In this approach, we aimed to establish and analyse a normalised immune cell cDNA library (using freshly isolated and activated lymphocytes, NK cells, monocytes and DC). In particular, we wanted to test next generation sequencing combined with a series of bioinformatic approaches. The resulting cDNA library contained 2x107 clones of which 1056 were used for an initial Sanger sequencing and 4x106 for the deep sequencing analysis. Through the latter we obtained >29k sequences for which more than 5000 matches where found on the equine reference sequences. Additionally we could identify more than 3500 sequences which had matches on both - non-equine RNA sequences as well as the equine genome. In these we find both extensions of existing RefSeq models and novel mRNAs alike. Less than 2% of sequences did not have any match in the mentioned databases.
Project description:Lysinibacillus varians GY32 was isolated from river sediment of electronic waste recycling site. Its invariably filament-to-rod cell cycle represents a novel bacteria morphogenesis that is crucial in understanding cell division coordination with lifecycle and environmental bacteria adaptation. A description of genes and biological processes involved in the special filament-to-rod cell cycle of L. varians GY32 is within reach.