Project description:Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of soil organic matter. However, poor understanding of the mechanisms responsible hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically test the link between microbial ecophysiological traits and topsoil carbon content across geographically distributed soils and land use contrasts. We discovered distinct pH-controls on microbial mechanisms of carbon accumulation. Land use intensification in low-pH soils that increased pH above a threshold (~ 6.2) lead to carbon loss through increased decomposition following alleviation of acid-retardation of microbial growth. However, loss of carbon with intensification in near neutral-pH soils was linked to decreased microbial biomass and reduced growth efficiency that was, in turn, related to tradeoffs with stress alleviation and resource acquisition. Thus, less intensive management practices in near neutral-pH soils have more potential for carbon storage through increased microbial growth efficiency; whereas, in acidic soils microbial growth is a bigger constraint on decomposition rates.
Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other
Project description:It has long been recognized that species occupy a specific ecological niche within their ecosystem. The ecological niche is defined as the number of conditions and resources that limit species distribution. Within their ecological niche, species do not exist in a single physiological state but in a number of states we call the Natural Operating Range. In this paper we link ecological niche theory to physiological ecology by measuring gene expression levels of collembolans exposed to various natural conditions. The soil-dwelling collembolan Folsomia candida was exposed to 26 natural soils with different soil characteristics (soil type, land use, practice, etc). The animals were exposed for two days and gene expression levels were measured. The main factor found to regulate gene expression was the soil type (sand or clay), in which 18.5% of the measured genes were differentially expressed. Gene Ontology analysis showed animals exposed to sandy soils experience general stress, affecting cell homeostasis and replication. Multivariate analysis linking soil chemical data to gene expression data revealed that soil fertility influences gene expression. Land-use and practice had less influence on gene expression; only forest soils showed a different expression pattern. A variation in gene expression variation analysis showed overall low variance in gene expression. The large difference in response to soil type was caused by the soil physicochemical properties where F. candida experiences clay soils and sandy soils as very different from each other. This collembolan prefers fertile soils with high organic matter content, as soil fertility was found to correlate with gene expression and animals exposed to sandy soils (which, in general, have lower organic matter content) experience more general stress. Finally, we conclude that there is no such thing as a fixed physiological state for animals in their ecological niche and the boundary between the ecological niche and a stressed state depends on the genes/pathways investigated.
Project description:Soil qualities and rootstocks are among the main factors that have been acknowledged to influence grape development as well as fruit and wine composition. Despite the role of the soil and rootstock in establishing a successful vineyard in terms of grape quality, almost no molecular evidence linking soil and rootstock properties to the gene expression have been reported. The transcriptome variation in response to different soils and rootstocks was investigated through microarray technology. The cv. Pinot Noir was grown on different soils: sand, turf and vineyard soil. The plants were grafted on the contrasting 101-14 and 1103 Paulsen rootstocks. The modulation of genes expression in response to different soils and rootstocks was evaluated considering their potential impact on primary (carbohydrate) and secondary (phenylpropanoid) metabolisms. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Alessio Aprile. The equivalent experiment is VV41 at PLEXdb.]
Project description:It has long been recognized that species occupy a specific ecological niche within their ecosystem. The ecological niche is defined as the number of conditions and resources that limit species distribution. Within their ecological niche, species do not exist in a single physiological state but in a number of states we call the Natural Operating Range. In this paper we link ecological niche theory to physiological ecology by measuring gene expression levels of collembolans exposed to various natural conditions. The soil-dwelling collembolan Folsomia candida was exposed to 26 natural soils with different soil characteristics (soil type, land use, practice, etc). The animals were exposed for two days and gene expression levels were measured. The main factor found to regulate gene expression was the soil type (sand or clay), in which 18.5% of the measured genes were differentially expressed. Gene Ontology analysis showed animals exposed to sandy soils experience general stress, affecting cell homeostasis and replication. Multivariate analysis linking soil chemical data to gene expression data revealed that soil fertility influences gene expression. Land-use and practice had less influence on gene expression; only forest soils showed a different expression pattern. A variation in gene expression variation analysis showed overall low variance in gene expression. The large difference in response to soil type was caused by the soil physicochemical properties where F. candida experiences clay soils and sandy soils as very different from each other. This collembolan prefers fertile soils with high organic matter content, as soil fertility was found to correlate with gene expression and animals exposed to sandy soils (which, in general, have lower organic matter content) experience more general stress. Finally, we conclude that there is no such thing as a fixed physiological state for animals in their ecological niche and the boundary between the ecological niche and a stressed state depends on the genes/pathways investigated. Test animals were exposed to 26 natural soils + 2 control soils. 4 biological replicates per soil containing 25 grams of soil and 30 23-day-old animals per replicate, RNA was isolated after two days of exposure. for the micro-array hybridization design we made use of an interwoven loop design. from the four replicates per soil two were labeled with Cy3 and 2 with Cy5. It was made sure that now two replicates of the same soil were ever hybridized against the same soil.
Project description:Custom made functional gene micoarray (E-FGA) consisting of 13,056 mRNA-enriched anonymus microbial clones from dirverse microbial communities to profile microbial gene transcript in agricultural soils with low and high flux of N2O. A total of 96 genes displayed expression that differed significantly between low and high N2O emitting soils. Creation and validation of an cDNA microarray from environmental microbial mRNA, to use as a monitoring tool for microbial gene expression
Project description:the analysis of metaproteomics was applied to explore the effect of phthalic acid esters on microbial metabolism pathways in black soils at the protein level
Project description:Reforestation is effective in restoring ecosystem functions and enhancing ecosystem services of degraded land. The three most commonly employed reforestation methods of natural reforestation, artificial reforestation with native Masson pine (Pinus massoniana Lamb.), and introduced slash pine (Pinus elliottii Engelm.) plantations were equally successful in biomass yield in southern China. However, it is not known if soil ecosystem functions, such as nitrogen (N) cycling, are also successfully restored. Here, we employed a functional microarray to illustrate soil N cycling. The composition and interactions of N-cycling genes in soils varied significantly with reforestation method. Natural reforestation had more superior organization of N-cycling genes, and higher functional potential (abundance of ammonification, denitrification, assimilatory, and dissimilatory nitrate reduction to ammonium genes) in soils, providing molecular insight into the effects of reforestation.