Project description:We characterized transcriptomes of a Sinorhizobium meliloti wild type strain (CL150) expressing either Ca. Liberibacter asiaticus ctrA or Sinorhizobium meliloti ctrA
Project description:Investigation of whole genome gene expression level changes in a Sinorhizobium meliloti 1021 rpoH1 rpoH2 double mutant, compared to the wild-type strain. The mutations engineered into this strain render it deficient in symbiotic nitrogen fixation. The mutants analyzed in this study are further described in Mitsui, H, T. Sato, Y. Sato, and K. Minamisawa. 2004. Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Gen Genomics 271:416-425.
Project description:We characterized transcriptomes of a Sinorhizobium meliloti rpoH1rpoH2 deletion mutant (RFF231; Lang et al. 2018, mSphere 3:e00454-18) expressing either Ca. Liberibacter asiaticus rpoH or Sinorhizobium meliloti rpoH1
Project description:Sinorhizobium meliloti lives as a soil saprophyte, and engages in a nitrogen fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative sigmas, including 11 extracytoplasmic function (ECF) sigmas. We used custom Affymetrix Symbiosis Chips to characterize the global transcriptional response of S. meliloti overexpressing the ECF sigma factor, RpoE2. Our work identifies over 200 genes whose expression is dependent on RpoE2.
Project description:The Alphaproteobacterium Sinorhizobium meliloti lives in soil and is capable of fixing molecular nitrogen in symbiosis with legume plants. In this work, the small proteome of S. meliloti strain 2011 was studied to uncover translation of both annotated and novel small open reading frame (sORF)-encoded proteins (SEPs).
Project description:Sinorhizobium meliloti can live as a soil saprophyte, and can engage in a nitrogen fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative sigmas, including two putative RpoH (heat shock) sigmas. We used custom Affymetrix Symbiosis Chips to characterize the global transcriptional response of S. meliloti rpoH1, rpoH2 and rpoH1 rpoH2 mutants during heat shock and stationary phase growth. Under these conditions, expression of over 300 genes is dependent on rpoH1 and rpoH2.
Project description:Within this work we identified and characterized SMc03169 (hhrA) as a new Sinorhizobium meliloti gene product with relevance to biological nitrogen fixation symbiosis with leguminous plants. HhrA belongs to the TetR-family of repressors and its deletion from S. meliloti genome affected considerably gene expression as well as several phenotypic traits.
Project description:With a view to re-annotate the genome sequence of the nitrogen fixing bacterium Sinorhizobium meliloti, we generated oriented sequences of transcripts. To cover a large number of expressed genes we prepared RNA from bacteria grown in three very different physiological conditions including bacteria grown in liquid cultures (in both exponential and stationary growth phases) and from 10-day-old nodules in which bacteria were differentiated in nitrogen fixing bacteroids. The transcripts sequences were then integrated into EuGene-P, a new prokaryotic genome annotation tool able to integrate high throughput data including oriented RNA-Seq data directly into the prediction process, which led to the production of an accurate and complete annotation of the genome of S. meliloti strain 2011.
Project description:We characterized transcriptomes for strains overexpressing each of the Sinorhizobium meliloti ECF sigma factors the via a plasmid-borne, melibiose-inducible promoter plasmid (PmelA; pCAP11: Pinedo et al. 2008 J Bacteriol 190:2947-2956) compared to control strains carrying the empty vector.