Project description:Heart disease remains the leading cause of death globally. Although reperfusion following myocardial ischemia can prevent death by restoring nutrient flow, ischemia/reperfusion injury can cause significant heart damage. The mechanisms that drive ischemia/reperfusion injury are not well understood; currently, few methods can predict the state of the cardiac muscle cell and its metabolic conditions during ischemia. Here, we explored the energetic sustainability of cardiomyocytes, using a model for cellular metabolism to predict the levels of ATP following hypoxia. We modeled glycolytic metabolism with a system of coupled ordinary differential equations describing the individual metabolic reactions within the cardiomyocyte over time. Reduced oxygen levels and ATP consumption rates were simulated to characterize metabolite responses to ischemia. By tracking biochemical species within the cell, our model enables prediction of the cell’s condition up to the moment of reperfusion. The simulations revealed a distinct transition between energetically sustainable and unsustainable ATP concentrations for various energetic demands. Our model illustrates how even low oxygen concentrations allow the cell to perform essential functions. We found that the oxygen level required for a sustainable level of ATP increases roughly linearly with the ATP consumption rate. An extracellular O2 concentration of ~0.007 mM could supply basic energy needs in non-beating cardiomyocytes, suggesting that increased collateral circulation may provide an important source of oxygen to sustain the cardiomyocyte during extended ischemia. Our model provides a time-dependent framework for studying various intervention strategies to change the outcome of reperfusion.
Project description:Using proteomics, we analysed mitochondrial protein expression in the surviving myocardium, adjacent to the injury, after ischemia and reperfusion injury in a porcine model.
Project description:Ischemia reperfusion (I/R) promotes the severity of cardiomyocyte injur. Our study provides a potential new therapeutic strategy to alleviate ischemia reperfusion injury.
Project description:Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abrupt increases in intracellular Ca2+ during myocardial reperfusion cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Cardiac IR is accompanied by dynamic changes in expression of microRNAs (miRNAs), which inhibit specific mRNA targets. miR-214 is up-regulated during ischemic injury and heart failure in mice and humans, but its potential role in these processes is unknown. We show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The microarray contains 6 samples, each containing cDNA pooled from 3 mice per group. There are no replicates. The array was designed to make 3 different pairwise comparisons between the following: P14 WT and miR-214 KO hearts; adult WT and miR-214 KO skeletal muscle; adult WT and miR-214 KO hearts
Project description:Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abrupt increases in intracellular Ca2+ during myocardial reperfusion cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Cardiac IR is accompanied by dynamic changes in expression of microRNAs (miRNAs), which inhibit specific mRNA targets. miR-214 is up-regulated during ischemic injury and heart failure in mice and humans, but its potential role in these processes is unknown. We show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury.
Project description:To establish the role of Ikkb during acute kidney injury, we use a mouse line with a specific deletion of Ikkb in the renal tubular system and exposed them to ischemia/reperfusion. Sample collection were done 2 days and 14 days after ischemia/reperfusion.
Project description:Coronary heart disease is the leading cause of death worldwide. After an acute myocardial infarction, early reperfusion reduces infarct size, which correlates with improved clinical outcomes. Paradoxically, reperfusion although relieving ischemia, accelerates apoptosis in injured cardiomyocytes, which has led to the view that myocardial salvage is futile beyond the first few hours of reperfusion. In murine hearts subjected to 90 min of coronary artery occlusion and then 48 h of reperfusion, we show transient activation of intrinsic prosurvival insulin-like growth factor-1 (IGF-1) signaling. In these hearts, acute IGF-1 receptor inhibition decreases the abundance of prosurvival signaling molecules, and markedly activates caspase-3, a potent effector of apoptosis, in infarct border zone cardiomyocytes. We found that mouse mast cell protease-4 (MMCP-4) degraded IGF-1 in vitro by a novel catalytic activity of chymases. In vivo, this degradation, which is triggered by mast cell infiltration into the peri-infarct region and MMCP-4 extravasation, between 48 and 72 h post-ischemia/reperfusion (I/R), attenuates IGF-1 prosurvival signaling. In MMCP-4-deficient mice, while infarct size is not reduced at 24 h post-I/R, at 72 h post-I/R myocardial IGF-1 levels and signaling are increased, resulting in activation of the survival kinases Akt and ERK, inhibition of caspase-3, and reduced myocardial cell death. As a consequence, I/R-mediated loss of viable myocardium, adverse cardiac remodeling and contractile impairment are markedly reduced. Cardiomyocyte survival with consequent myocardial salvage may thus be possible even days after an ischemic insult, making them a novel therapeutic target for delayed cardioprotective therapy. Group 1 is wild type C57Bl6 uninjured hearts. These mice were not undergone any surgery and used as controls. Group 2 are wild type C57Bl6 72 h post-ischemia reperfusion (IR) injury hearts. These mice for subjected to ischemia reperfusion (IR) involving 90 min of left anterior descending coronary artery occlusion followed by reperfusion for 3 days or 72 h.
Project description:Restoration of blood flow is the definitive therapy to salvage myocardium following ischemic injury. However, sudden restoration of blood flow to the ischemic myocardium causes ischemia reperfusion injury (IRI). Here, the cardioprotective effect of remote ischemic postconditioning (RPostC) was investigated, based on our in vitro rat model of myocardial IRI. Three groups, including Sham, IRI, and IRI+ RPostC, were utilized for the analysis of Affymetrix Rat Gene 2.0 ST chip.
Project description:Purpose: to reveal the myocardium transcriptomic profile shift pattern before/after Ischemia Reperfusion stress in young, aged, and Sesn2-knockout mice. The goals of this study are to compare the transcriptomic shift pattern among young, aged, and Sesn2-knockout to explore the caridoprotective mechanism of Sesn2 in Ischemia Reperfusion stress and the critical roles of Sesn2 in age-related adapting response to Ischemia Reperfusion stress. Methods: Myocardium transcriptome profiles of young (3-4 months) wild-type, aged (24-26 months) wild-type, and Sesn2-knockout (3-4 months) mice in normal physiological and Ischemia Reperfusion stressed conditions. Results: Sesn2 is critical to repress inflammation and maintain metabolic and mitochondria homeostasis in hearts under Ischemia Reperfusion stress, especially to aged hearts.
Project description:Ischemic preconditioning is effective in limiting subsequent ischemic acute kidney injury in experimental models. microRNAs are an important class of post-transcriptional regulator and show promise as biomarkers of kidney injury. An evaluation was performed of the time- and dose-dependent effects of ischemic preconditioning in a rat model of functional (bilateral) ischemia-reperfusion injury. A short, repetitive sequence of ischemic preconditioning resulted in optimal protection from subsequent ischemia-reperfusion injury. A detailed characterization of microRNA expression in ischemic preconditioning/ischemia-reperfusion injury was performed by small RNA-Seq.