Project description:Revised draft genomes of the type strains Rhodomicrobium vannielii ATCC 17100 and Rhodomicrobium udaipurense JA643 Genome sequencing and assembly
Project description:Recent attempts to sequence regions of the Rhodomicrobium vannielii ATCC 17100 genome revealed discrepancies with the previously published genome. We report the revised draft genome sequences of the type strains Rhodomicrobium vannielii ATCC 17100 and Rhodomicrobium udaipurense JA643. These revisions will facilitate genetic studies of phototrophic metabolism in these bacteria.
Project description:Most non-spherical bacteria rely on the actin-like MreB cytoskeleton to control synthesis of a cell-shaping and primarily rod-like cell wall. Diverging from simple rod shape generally requires accessory cytoskeletal elements, which locally interfere with the MreB-guided cell wall synthesis. Conserved and widespread representatives of this accessory cytoskeleton are bactofilins that polymerize into static, non-polar bundles of filaments. Intriguingly, many species of the Actinobacteria and Rhizobiales manage to grow rod-like without MreB by tip extension, yet some of them still possess bactofilin genes, whose function in cell morphogenesis is unknown. An intricate representative of these tip-growing bacteria is Rhodomicrobium vannielii; a member of the hitherto genetically not tractable and poorly studied Hyphomicrobiaceae within the MreB-less Rhizobiales order. R. vannielii displays complex asymmetric cell shapes and differentiation patterns including filamentous hyphae to produce offspring and to build dendritic multicellular arrays. Here, we introduce techniques to genetically access R. vannielii, and we elucidate the role of bactofilins in its sophisticated morphogenesis. By targeted mutagenesis and fluorescence microscopy, protein interaction studies and peptidoglycan incorporation analysis we show that the R. vannielii bactofilins are associated with the hyphal growth zones and that one of them is essential to form proper hyphae. Another paralog is suggested to represent a novel hybrid and co-polymerizing bactofilin. Notably, we present R. vannielii as a powerful new model to understand prokaryotic cell development and control of multipolar cell growth in the absence of the conserved cytoskeletal element, MreB.
Project description:The structure of lipid A from lipopolysaccharide (LPS) of Rhodomicrobium vannielii ATCC 17100 (Rv) a phototrophic, budding bacterium was re-investigated using high-resolution mass spectrometry, NMR, and chemical degradation protocols. It was found that the (GlcpN)-disaccharide lipid A backbone was substituted by a GalpA residue that was connected to C-1 of proximal GlcpN. Some of this GalpA residue was ?-eliminated by alkaline de-acylation, which indicated the possibility of the presence of another so far unidentified substituent at C-4 in non-stoichiometric amounts. One Manp residue substituted C-4' of distal GlcpN. The lipid A backbone was acylated by 16:0(3-OH) at C-2 of proximal GlcpN, and by 16:0(3-OH), i17:0(3-OH), or 18:0(3-OH) at C-2' of distal GlcpN. Two acyloxy-acyl moieties that were mainly formed by 14:0(3-O-14:0) and 16:0(3-O-22:1) occupied the distal GlcpN of lipid A. Genes that were possibly involved in the modification of Rv lipid A were compared with bacterial genes of known function. The biological activity was tested at the model of human mononuclear cells (MNC), showing that Rv lipid A alone does not significantly stimulate MNC. At low concentrations of toxic Escherichia coli O111:B4 LPS, pre-incubation with Rv lipid A resulted in a substantial reduction of activity, but, when higher concentrations of E. coli LPS were used, the stimulatory effect was increased.