Project description:MERS-CoV genome-derived small RNAs in Huh7 cells infected with a Korean isolate of MERS-CoV (KNIH002; Genbank accession no. KT029139.1)
Project description:The absence of a robust disease model currently hinders the evaluation of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV that results in mild-to-moderate disease has been utilized to describe the pathogenesis of this virus and for the evaluation of therapeutics, the inability to produce uniform disease with substantial virus replication complicates analysis in countermeasure studies. In an attempt to identify a more robust disease model, DPP4 sequences of various non-human primates were aligned. Modeling of the interactions between the receptor binding domain of MERS-CoV and its cognate receptor DPP4 predicted a "good fit" with complete conservation of all of the critical residues. To determine the feasibility of the marmoset as a MERS-CoV disease model, common marmosets were inoculated with MERS-CoV via combined intratracheal, intranasal, oral and ocular routes. Marmosets developed signs of moderate to severe illness with progressive serious to severe pneumonia. Progressive gross lesions were evident in animals necropsied at 3, 4 and 6 days post inoculation and two animals were euthanized during the study due to disease severity. This is the first description of a moderate-to-severe, with potentially lethality, disease model of MERS-CoV and as such will have utility for vaccine and other countermeasure efficacy evaluations in addition to further pathogenesis studies. Lung tissue samples were isolated and sequenced at 3, 4 and 6 days post inoculation. Two animals were euthanized during the study due to disease severity.
Project description:The purpose is to obtain samples for mRNA analysis in primary human fibroblasts infected with wild type MERS-coronavirus (MERS-CoV) (icMERS).
Project description:Background: The recent emergence of a novel coronavirus in the Middle East (designated MERS-CoV) is a reminder of the zoonotic potential of coronaviruses and the severe disease these etiologic agents can cause in humans. Clinical features of Middle East respiratory syndrome (MERS) include severe acute pneumonia and renal failure that is highly reminiscent of severe acute respiratory syndrome (SARS) caused by SARS-CoV. The host response is a key component of highly pathogenic respiratory virus infection. Here, we computationally analyzed gene expression changes in a human airway epithelial cell line infected with two genetically distinct MERS-CoV strains obtained from human patients, MERS-CoV-EMC (designated EMC) and MERS-CoV-London (designated LoCoV). Results: Using topological techniques, such as persistence homology and filtered clustering, we characterized the host response system to the different MERS-CoVs, with LoCoV inducing early kinetic changes, between 3 and 12 hours post infection, compared to EMC. Robust transcriptional changes distinguished the two MERS-CoV strains predominantly at the late time points. Combining statistical analysis of infection and cytokine-stimulated treatment transcriptomics, we identified differential innate and pro-inflammatory responses between the two virus strains, including up-regulation of extracellular remodeling genes following LoCoV infection and differential pro-inflammatory responses between the two strains. Conclusions: These transcriptional differences may be the result of amino acid differences in viral proteins known to modulate innate immunity against MERS infection. Triplicate wells of Calu-3 2B4 cells were infected with Human Coronavirus EMC 2012 (HCoV-EMC) or time-matched mock infected. Cells were harvested at 0, 3, 7, 12, 18 and 24 hours post-infection (hpi), RNA extracted and transcriptomics analyzed by microarray.
Project description:The purpose is to obtain samples for microRNA analysis in primary human airway epithelial cells infected with wild type MERS-coronavirus (MERS-CoV) (icMERS).
Project description:Transmissibility of respiratory viruses is a complex viral trait that is intricately linked to tropism. Several highly transmissible viruses, including SARS-CoV-2 and Influenza viruses, specifically target multiciliated cells in the upper respiratory tract to facilitate efficient human-to-human transmission. In contrast, the zoonotic MERS-CoV generally transmits poorly between humans, which is largely attributed to the absence of its receptor DPP4 in the upper respiratory tract. At the same time, MERS-CoV epidemiology is characterized by occasional superspreading events, suggesting that some individuals can disseminate this virus effectively. Here, we utilized well-differentiated human pulmonary and nasal airway organoid-derived cultures to further delineate the respiratory tropism of MERS-CoV. We find that MERS-CoV replicated to high titers in both pulmonary and nasal airway cultures. Using single-cell mRNA sequencing, immunofluorescence and immunohistochemistry, we show that MERS-CoV preferentially targeted multiciliated cells, leading to loss of ciliary coverage. MERS-CoV cellular tropism was dependent on the differentiation of the organoid-derived cultures, and replication efficiency varied considerably between donors. Similarly, variable and focal expression of DPP4 was revealed in human nose tissues. This study indicates that the upper respiratory tract tropism of MERS-CoV may vary between individuals due to differences in DPP4 expression, providing an explanation for the unpredictable transmission pattern of MERS-CoV.
Project description:The purpose is to obtain samples for mRNA analysis in primary human microvascular endothelial cells infected with wild type MERS-coronavirus (MERS-CoV) (icMERS).
Project description:The absence of a robust disease model currently hinders the evaluation of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV that results in mild-to-moderate disease has been utilized to describe the pathogenesis of this virus and for the evaluation of therapeutics, the inability to produce uniform disease with substantial virus replication complicates analysis in countermeasure studies. In an attempt to identify a more robust disease model, DPP4 sequences of various non-human primates were aligned. Modeling of the interactions between the receptor binding domain of MERS-CoV and its cognate receptor DPP4 predicted a "good fit" with complete conservation of all of the critical residues. To determine the feasibility of the marmoset as a MERS-CoV disease model, common marmosets were inoculated with MERS-CoV via combined intratracheal, intranasal, oral and ocular routes. Marmosets developed signs of moderate to severe illness with progressive serious to severe pneumonia. Progressive gross lesions were evident in animals necropsied at 3, 4 and 6 days post inoculation and two animals were euthanized during the study due to disease severity. This is the first description of a moderate-to-severe, with potentially lethality, disease model of MERS-CoV and as such will have utility for vaccine and other countermeasure efficacy evaluations in addition to further pathogenesis studies.