Project description:In this study, methylated DNA immunoprecipitation and high-throughput sequencing (MeDIP-seq) was used to provide an atlas of DNA methylomes in the heart tissue of hypoxic highland Tibetan and lowland Chahua chicken embryos.A total of 31.2 gigabases (Gb) of sequence data were generated from six MeDIP-seq libraries. We identified 1049 differentially methylated regions (DMRs) and 695 related differentially methylated genes (DMGs) between the two chicken breeds. The DMGs were involved in vascular smooth muscle contraction, VEGF signaling pathway, calcium signaling pathway, and other hypoxia related pathways. Five candidate genes that had low methylation (EDNRA, EDNRB, BMPR1B, BMPRII, and ITGA2) might have key regulatory functions for hypoxia adaptation in Tibetan chicken embryos. Our study provides significant explanations for the functions of genes and their epigenetic regulation for hypoxic adaptation in Tibetan chickens.
Project description:Copy number variation profiles comparing control female Dehong chiken blood DNA with 11 different chicken breeds(Silkie, Tibetan Chicken, Gallus gallus spadiceus, Bearded Chicken, Jinhu Chicken, Anak Chicken, Beijing Fatty Chicken, Langshan Chicken, Qingyuan partridge Chicken, Shek-Ki Chicken, Wenchang Chicken) blood DNA. Each test breeds had one male and one female sample, totally 22 test DNA samples.Goal is to get the golbal copy number variation profile between chicken breeds.
Project description:Adaptation to hypoxia is a complicated and important physiological course for organisms, but the genetic mechanism underlying the adaptation is not fully understood yet. Tibetan Chicken (T), an indigenous chicken breed in China which inhabit in high areas with an altitude above 2,900 meters. Shouguang Chicken(S) and Dwarf Recessive White Chicken (DRW), two lowland chicken breeds, were used as control groups. The heart was the first functional organ to develop during the embryonic development. Furthermore, the heart is an efficient energy converter utilizing the most appropriate fuel for a given environment. Therefore, GeneChip® Chicken Genome Array was employed to identify the differentially expressed genes in embryonic hearts of Tibetan Chicken and two lowland chicken breeds in both hypoxic and normoxic incubating environments with a genome wide profile. Experiment Overall Design: To obtain general expression profiles of embryonic hearts in Tibetan Chicken(T), Dwarf Recessive White Chicken (DRW)and Shouguang Chicken (S)in hypoxia and normoxia, the fertilized full sib eggs of all the three chicken breeds were incubated under two different conditions. The heart was isolated from all the three chicken breeds under the two different conditions for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Adaptation to hypoxia is a complicated and important physiological course for organisms, but the genetic mechanism underlying the adaptation is not fully understood yet. Tibetan Chicken (T), an indigenous chicken breed in China which inhabit in high areas with an altitude above 2,900 meters. Shouguang Chicken(S) and Dwarf Recessive White Chicken (DRW), two lowland chicken breeds, were used as control groups. The heart was the first functional organ to develop during the embryonic development. Furthermore, the heart is an efficient energy converter utilizing the most appropriate fuel for a given environment. Therefore, GeneChip® Chicken Genome Array was employed to identify the differentially expressed genes in embryonic hearts of Tibetan Chicken and two lowland chicken breeds in both hypoxic and normoxic incubating environments with a genome wide profile. Keywords: stress response
Project description:Tibetan chickens, a unique plateau breed, have good performances to adapt to high-altitude hypoxic environments. A number of positively selected genes have been reported in Tibetan chickens; however, the mechanisms of gene expression for hypoxia adaptation are not fully understood. In the present study, eggs from Tibetan (TC) and Chahua (CH) chickens were incubated under hypoxic and normoxic conditions, and vascularization in the chorioallantoic membrane (CAM) of embryos was observed. We found that the vessel density index (VDI) in CAM of TCs was lower than in CHs under hypoxia incubation.Proteomic analyses of CAM tissues were performed in TC and CH embryos under hypoxic incubation using iTRAQ. We obtained 387 differentially expressed proteins (DEPs) that were mainly enriched in angiogenesis, vasculature development, blood vessel morphogenesis, blood circulation, renin-angiotensin system, and HIF-1 and VEGF signaling pathways. Twenty-six genes involved in angiogenesis and blood circulation, two genes involved in ion transport, and six genes that regulated energy metabolism were identified as candidate functional genes in regulating hypoxic adaption of chicken embryos. Therefore, this research provided insights into the molecular mechanism of hypoxia adaptation in Tibetan chickens.