Project description:This study evaluated the ammonium oxidizing communities (COA) associated with a potato crop (Solanum phureja) rhizosphere soil in the savannah of Bogotá (Colombia) by examining the presence and abundance of amoA enzyme genes and transcripts by qPCR and next-generation sequence analysis. amoA gene abundance could not be quantified by qPCR due to problems inherent in the primers; however, the melting curve analysis detected increased fluorescence for Bacterial communities but not for Archaeal communities. Transcriptome analysis by next-generation sequencing revealed that the majority of reads mapped to ammonium-oxidizing Archaea, suggesting that this activity is primarily governed by the microbial group of the Crenarchaeota phylum. In contrast,a lower number of reads mapped to ammonia-oxidizing bacteria.
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
Project description:Transcriptional profiling of marine ammonia oxidizing archaea Nitrosopumilus maritimus cells comparing exponential phase control cells with cells under 24 hours starvation and with cells under recovery after 24 hours starvation. Goal was to determine the effects of global transcriptional responses of N. maritimus cells under ammonia starvation and recovery conditions.
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. SUBMITTER_CITATION: Title: Acidification alters the composition of ammonia oxidizing microbial assemblages in marine mesocosms Journal: Marine Ecology Progress Series Issue: 492 Pages: 1-8 DOI: 10.3354/meps 10526 Authors: Jennifer L Bowen Patrick J Kearns Michael Holcomb Bess B Ward