Project description:The Gayal (Bos frontalis) is a rare semi-domesticated cattle in China. Gayal has typical beef body shape and good meat production performance. Compared with other cattle species, it has the characteristics of tender meat and extremely low fat content. To explore the underlying mechanism responsible for the differences of meat quality between different breeds, the longissimus dorsi muscle (LM) from Gayal and Banna cattle (Bos taurus) were investigated using transcriptome analysis. The gene expression profiling identified 638 differentially expressed genes (DEGs) between LM muscles from Gayal and Banna cattle. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the PPAR signaling pathway, lipid metabolism and amino acid metabolism pathway. Protein-protein interaction(PPI) network analysis showed APOB, CYP7A1, THBS2, ITGAV, IGFBP1 and IGF2R may have great impact on meat quality characteristics of Gayal. Moreover, three transcription factors, FOXA2, NEUROG2, and RUNX1, which may affect meat quality by regulating the expression of genes related to muscle growth and development have also been found. In summary, our research reveals the molecular mechanisms that cause Gayal meat quality characteristics. It will contribute to improving meat quality of cattle through molecular breeding.
Project description:Deep sequencing of mRNA from 6 organs of yak (Bos grunniens) Analysis of ploy(A)+ RNA of brain,heart,liver,lung,spleen, and stomach of yak (Bos grunniens)
Project description:Purpose: The goal of this study was to reveal epigenetic differences in the microRNA transcriptomes of two organs (heart and lung) between yak and cattle. Methods: Three unrelated 2-year old adult females for both of yaks and cattle (Luxi Huang cattle) were used in this study. Two of significant hypoxia-responsive tissues (heart and lung) were rapidly collected from each carcass, washed three times with physiological saline, immediately frozen in liquid nitrogen. All frozen samples were stored at –80 °C until RNA extraction.The total RNA were extracted with Trizol (Ambion, USA). NanoDrop ND-2000 spectrophotometer (Nano Drop, DE, USA) and Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) were used to monitor the concentration and integrity of RNA, respectively. In brief, several successive steps consist the Illumina sequencing. The small RNA with length of 14-40 nt were first purified by polyacrylamide gel electrophoresis (PAGE), and then specific adapters were ligated to the purified small RNA. The ligated RNA were reverse transcribed to cDNA libraries. Finally, each library were sequenced on Genome Analyzer. Results: We identified 808 widely-expressed conserved and 697 species-specific novel miRNAs in two species. In addition, although two organs showed similar high expression miRNAs, larger differentiation was present in lung than heart between two species. In addition, miRNAs with significantly differentiated patterns of expression in two organs exhibited obvious co-operation effect in high altitude adaptation in form of miRNA family and cluster. Functional analysis revealed that a large amount of differentially expressed miRNAs were enriched in hypoxia-related pathways, such as VEGF signaling pathway, HIF-1α signaling pathway, insulin signaling pathway, DNA damage response, apoptosis, fatty acid metabolism and glucose metabolism. These results suggested the diverse degrees of epigenetic variation in different tissues between yak and cattle, and revealed extensive roles of miRNAs in high altitude adaptation. Conclusions: In this study, we illustrated the differences in the microRNA transcriptomes level for heart and lung between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation. The work performed here will provide a typical demonstration for future deciphering the mechanism of high altitude adaptation
Project description:Cattle-yak is the hybrid offspring of yak and cattle. It has obvious heterosis in production performance, but the male sterility of cattle-yak has always been the focus of attention. Studies have shown that non-coding RNA is involved in the regulation of spermatogenesis. We comprehensively compared the testicular transcription profiles of cattle, yak and cattle-yak. More DEGs, DECs and DEMs were found in the intersection of the two comparison groups of cattle and cattle-yak, yak and cattle-yak, with 4,968, 360 and 59, respectively. The DEGs of cattle-yak, cattle and yak were mainly enriched in biological processes such as spermatogenesis, male gamete generation and sexual reproduction. At the same time, GO and KEGG analysis suggested that DECs host genes and DEMs source genes were also involved in the regulation of spermatogenesis. The construction of potential ceRNA networks found that some differentially expressed ncRNAs may be involved in the regulation of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, miR-15b, etc., as well as unreported miR-6123, miR-1306 and some miRNA and circRNA interaction pairs. This study provides a reference for further study on the mechanism of male sterility in cattle-yak.
Project description:The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics.
Project description:To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (|r| > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture. Experiment Overall Design: Gene expression profiles were correlated with beef traits measured at the same cattle.
Project description:BackgroundWe present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque.ResultsThe assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly.ConclusionThe biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.