ABSTRACT: Comparison analysis of microRNAs in response to infection of Dengue virus type 2 adapted strain of Vero cells and its source strain in vero cells
Project description:Comparison analysis of microRNAs in response to Dengue virus type 2 coming from different cell lines in Vero cells by high-throughput sequencing to reveal differential infective mechanisms
Project description:To compare MicroRNA expression in Vero cells infected with DENV-2 adapted strain of Vero cells and its source srain derived from C6/36 cells
Project description:Two rounds of TMT relative quantitative proteomics were performed to detect cellular factors involved in p-eIF4E regulation of the synthesis of viral proteins.our first round of screening identified differentially expressed proteins in PEDV-infected cells and mock-infected cells; the cellular pathways involved were mainly the estrogen, cAMP, and calcium signaling pathways. Second round screening identified differentially expressed proteins in the PEDV-infected S209A-Vero cells vs. the PEDV-infected WT-Vero cells; the regulated cellular pathways were found to be mainly in the PI3K-Akt, focal adhesion, and mTOR signaling pathways, and the biological processes and molecular functions in which p-eIF4E played a role were related mainly to metabolism and biogenesis, catalytic activity, and stimuli response.4006 host factors were detected, of which 193 (in brown) were significantly upregulated (ratio ≥1.2, P<0.05) and 191 (in green) were down-regulated upon PEDV infection (ratio ≤0.83, P<0.05). 29 of the 191 down-regulated proteins were susceptible to a low level of p-eIF4E . Notably, among the 193 upregulated cellular proteins, 77 were upregulated in the WT-Vero over the S209A-Vero cells , suggesting that the WT-Vero cells are more susceptible to a high level of p-eIF4E.
Project description:We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.
Project description:Full-field electroretinography is an objective measure of retinal function, serving as an important diagnostic clinical tool in ophthalmology for evaluating the integrity of the retina. Given the similarity between the anatomy and physiology of the human and Green Monkey eyes, this species has increasingly become a favorable non-human primate model for assessing ocular defects in humans. To test this model, we obtained full-field electroretinographic recordings (ERG) and normal values for standard responses required by the International Society for Clinical Electrophysiology of Vision (ISCEV). Photopic and scotopic ERG recordings were obtained by full-field stimulation over a range of 6 log units of intensity in dark-adapted or light-adapted eyes of adult Green Monkeys (Chlorocebus sabaeus). Intensity, duration, and interval of light stimuli were varied separately. Reproducible values of amplitude and latency were obtained for the a- and b-waves, under well-controlled adaptation and stimulus conditions; the i-wave was also easily identifiable and separated from the a-b-wave complex in the photopic ERG. The recordings obtained in the healthy Green Monkey matched very well with those in humans and other non-human primate species (Macaca mulatta and Macaca fascicularis). These results validate the Green Monkey as an excellent non-human primate model, with potential to serve for testing retinal function following various manipulations such as visual deprivation or drug evaluation.