Project description:Chronic Stress-induced Gut Dysfunction Exacerbates Parkinson’s Disease Phenotype via the Gut-Brain Axis in a Rotenone-induced Parkinson’s Disease Rodent Model.
Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to play a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of the gram-positive pathogenic and reduction of bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management. In this study, we establish a link between the two phenomena, namely gut barrier compromise and dysregulated bile acid metabolism. We show for the first time that morphine fosters significant gut microbial dysbiosis and disrupts cholesterol/bile acid metabolism. Changes in the gut microbial composition is strongly correlated to disruption in host inflammatory homeostasis13,14 and in many diseases (e.g. cancer/HIV infection), persistent inflammation is known to aid and promote the progression of the primary morbidity. We show here that chronic morphine, gut microbial dysbiosis, disruption of cholesterol/bile acid metabolism and gut inflammation; have a linear correlation. This opens up the prospect of devising minimally invasive adjunct treatment strategies involving microbiome and bile acid modulation and thus bringing down morphine-mediated inflammation in the host.
Project description:We used a transgenic mouse model overexpressing the complete human SNCA genes modeling familial and sporadic forms of Parkinson’s disease to study whether environmental conditions such as standard versus enriched environment changes the gut microbiome and influences disease progression.
Project description:The investigators hypothesize that gut microbiome composition and the four bacterial gene markers (M3) show dynamic changes after endoscopic resection of advanced neoplasia, some key bacteria are associated with restoration of gut microbiome after endoscopic resection.
Project description:<p>Findings from recent studies suggest that the community of microbes residing in the human body is important in disease etiology; however, it remains unclear whether personal factors modulate human microbial composition. Studies based on animal models indicate that differences in composition might be attributed to sex-mediated effects. We analyzed the relationship of sex, adiposity, and dietary fiber intake with gut microbial composition using fecal samples from human subjects. We explored the associations of these factors with metrics of community composition and specific taxon abundances. We found that men and women had significantly different microbial community composition and that women had reduced abundance of a major phylum. Adiposity was associated with gut microbiome composition and specifically in women but not in men. Fiber from fruits and vegetables and fiber from beans were each associated with increased abundance of specific bacterial taxa. These findings provide initial indications that sex, adiposity, and dietary fiber might play important roles in influencing the human gut microbiome. Better understanding of these factors may have significant implications for gastrointestinal health and disease prevention.</p>
Project description:Here, we report analysis of both the bacterial and host transcriptome as affected by colonization of R. hominis in the mouse gut. Microbial genes required for colonization and adaptation in the murine gut, as well as host genes responding to colonization by this bacterial species, were uncovered.