Project description:Transition from primed to naive pluripotency is associated with dynamic changes in transposable element (TE) expression and demethylation of imprinting control regions (ICRs). In mouse, ICR methylation and TE expression are each regulated by TRIM28; however, the role of TRIM28 in humans is less clear. Here, we show that a null mutation in TRIM28 causes significant alterations in TE expression in both the naive and primed states of human pluripotency, and phenotypically this has limited effects on self-renewal, instead causing a loss of germline competency. Furthermore, we discovered that TRIM28 regulates paternal ICR methylation and chromatin accessibility in the primed state, with no effects on maternal ICRs. Taken together, our study shows that abnormal TE expression is tolerated by self-renewing human pluripotent cells, whereas germline competency is not.
Project description:Naive and primed human pluripotent stem cells (hPSC) provide valuable models to study cellular and molecular developmental processes. The lack of detailed information about cell-surface protein expression in these two pluripotent cell types prevents an understanding of how the cells communicate and interact with their microenvironments. Here, we used plasma membrane profiling to directly measure cell-surface protein expression in naive and primed hPSC. This unbiased approach quantified over 1700 plasma membrane proteins including those involved in cell adhesion, signalling and cell interactions. Notably, multiple cytokine receptors upstream of JAK-STAT signalling were more abundant in naive hPSC. In addition, functional experiments showed that FOLR1 and SUSD2 proteins are highly expressed at the cell surface in naive hPSC but are not required to establish human naive pluripotency. This study provides a comprehensive stem cell proteomic resource that uncovers differences in signalling pathway activity and has identified new markers to define human pluripotent states.
Project description:Mouse embryonic stem cells (mESCs) are in naive pluripotency that represents the ground state of development, from which all cells in the mouse embryo are derived. In contrast, human embryonic stem cells (hESCs) are in a primed state of pluripotency with many different properties. Despite intense efforts to generate naive human pluripotent stem cells (hPSCs), it has not been possible to derive naive hPSCs without relying on transgene overexpression or chemicals. Here, we show that a transient treatment with Torin1, a selective inhibitor of mTOR, converted hPSCs from primed to naive pluripotency. The naive hPSCs were maintained in the same condition as mESCs in defined media with 2iLI (MEK inhibitor, GSK3b inhibitor, LIF and Insulin). Like mESCs, they exhibited high clonal efficiency, rapid cell proliferation, active mitochondrial respiration, X chromosome activation, DNA hypomethylation, and transcriptomes similar to those of human blastocysts than primed hESCs. Most importantly, the naive hPSCs significantly contributed to mouse embryos when transferred to mouse blastocysts. mTor inhibition induced nuclear translocation of TFE3, a critical transcription factor at the interplay of autophagy and pluripotency. TFE3 with mutated nuclear localization signal blocked the conversion from primed to naive pluripotency. It appears that by mimicking diapause at the cellular level, naive pluripotency in human can be readily attained from primed hPSCs, thus establishing the unified ground state of pluripotency in mammals.
Project description:Mouse embryonic stem cells (mESCs) are in naive pluripotency that represents the ground state of development, from which all cells in the mouse embryo are derived. In contrast, human embryonic stem cells (hESCs) are in a primed state of pluripotency with many different properties. Despite intense efforts to generate naive human pluripotent stem cells (hPSCs), it has not been possible to derive naive hPSCs without relying on transgene overexpression or chemicals. Here, we show that a transient treatment with Torin1, a selective inhibitor of mTOR, converted hPSCs from primed to naive pluripotency. The naive hPSCs were maintained in the same condition as mESCs in defined media with 2iLI (MEK inhibitor, GSK3b inhibitor, LIF and Insulin). Like mESCs, they exhibited high clonal efficiency, rapid cell proliferation, active mitochondrial respiration, X chromosome activation, DNA hypomethylation, and transcriptomes similar to those of human blastocysts than primed hESCs. Most importantly, the naive hPSCs significantly contributed to mouse embryos when transferred to mouse blastocysts. mTor inhibition induced nuclear translocation of TFE3, a critical transcription factor at the interplay of autophagy and pluripotency. TFE3 with mutated nuclear localization signal blocked the conversion from primed to naive pluripotency. It appears that by mimicking diapause at the cellular level, naive pluripotency in human can be readily attained from primed hPSCs, thus establishing the unified ground state of pluripotency in mammals.
Project description:Pluripotent cell identity comprises a spectrum of cell states including naive and primed states, which are typified by mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs), respectively. Here we define a pluripotent cell fate (PCF) gene signature based on RNA-seq analysis associated with naive and primed pluripotency acquisition, and identify Zfp281 as a key transcriptional regulator for primed pluripotency and also as a barrier to achieve the naive pluripotency of both mouse and human ESCs.
Project description:Pluripotent cell identity comprises a spectrum of cell states including naive and primed states, which are typified by mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs), respectively. Here we define a pluripotent cell fate (PCF) gene signature based on RNA-seq analysis associated with naive and primed pluripotency acquisition, and identify Zfp281 as a key transcriptional regulator for primed pluripotency and also as a barrier to achieve the naive pluripotency of both mouse and human ESCs.
Project description:Autophagy is a conserved cellular mechanism to degrade unwanted cytoplasmic proteins and organelles to recycle their components, and it is proved to be critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. However, the role of autophagy in embryonic development remains elusive, and no information exists regarding its functions during the transition from naive to primed pluripotency. Here by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we describe that the dynamic changes in Atg7-dependent autophagy is required for the naive to primed transition, and it is also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that Nanog acts as a barrier to prevent pluripotency transition, and autophagy-dependent Nanog degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy adaptor protein Sqstm1 (p62) is nucleus located during the pluripotency transition period and it is preferentially associated with ubiquitinated Nanog for selective protein degradation. In vivo, loss of autophagy by Atg7 depletion disrupts peri-implantation development and we observed increased chromatin association of Nanog, which affects neuronal differentiation through activation of a subset of neuroectodermal development-associated enhancers. Taken together, our findings illuminate regulatory mechanisms underlying the naive to primed transition and reveal that autophagy-dependent regulation of Nanog is essential for exit from the naive state and marks distinct cell fate allocation during lineage specification.
Project description:Autophagy is a conserved cellular mechanism to degrade unwanted cytoplasmic proteins and organelles to recycle their components, and it is proved to be critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. However, the role of autophagy in embryonic development remains elusive, and no information exists regarding its functions during the transition from naive to primed pluripotency. Here by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we describe that the dynamic changes in Atg7-dependent autophagy is required for the naive to primed transition, and it is also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that Nanog acts as a barrier to prevent pluripotency transition, and autophagy-dependent Nanog degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy adaptor protein Sqstm1 (p62) is nucleus located during the pluripotency transition period and it is preferentially associated with ubiquitinated Nanog for selective protein degradation. In vivo, loss of autophagy by Atg7 depletion disrupts peri-implantation development and we observed increased chromatin association of Nanog, which affects neuronal differentiation through activation of a subset of neuroectodermal development-associated enhancers. Taken together, our findings illuminate regulatory mechanisms underlying the naive to primed transition and reveal that autophagy-dependent regulation of Nanog is essential for exit from the naive state and marks distinct cell fate allocation during lineage specification.
Project description:Autophagy is a conserved cellular mechanism to degrade unwanted cytoplasmic proteins and organelles to recycle their components, and it is proved to be critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. However, the role of autophagy in embryonic development remains elusive, and no information exists regarding its functions during the transition from naive to primed pluripotency. Here by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we describe that the dynamic changes in Atg7-dependent autophagy is required for the naive to primed transition, and it is also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that Nanog acts as a barrier to prevent pluripotency transition, and autophagy-dependent Nanog degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy adaptor protein Sqstm1 (p62) is nucleus located during the pluripotency transition period and it is preferentially associated with ubiquitinated Nanog for selective protein degradation. In vivo, loss of autophagy by Atg7 depletion disrupts peri-implantation development and we observed increased chromatin association of Nanog, which affects neuronal differentiation through activation of a subset of neuroectodermal development-associated enhancers. Taken together, our findings illuminate regulatory mechanisms underlying the naive to primed transition and reveal that autophagy-dependent regulation of Nanog is essential for exit from the naive state and marks distinct cell fate allocation during lineage specification.
Project description:Autophagy is a conserved cellular mechanism to degrade unwanted cytoplasmic proteins and organelles to recycle their components, and it is proved to be critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. However, the role of autophagy in embryonic development remains elusive, and no information exists regarding its functions during the transition from naive to primed pluripotency. Here by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we describe that the dynamic changes in Atg7-dependent autophagy is required for the naive to primed transition, and it is also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that Nanog acts as a barrier to prevent pluripotency transition, and autophagy-dependent Nanog degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy adaptor protein Sqstm1 (p62) is nucleus located during the pluripotency transition period and it is preferentially associated with ubiquitinated Nanog for selective protein degradation. In vivo, loss of autophagy by Atg7 depletion disrupts peri-implantation development and we observed increased chromatin association of Nanog, which affects neuronal differentiation through activation of a subset of neuroectodermal development-associated enhancers. Taken together, our findings illuminate regulatory mechanisms underlying the naive to primed transition and reveal that autophagy-dependent regulation of Nanog is essential for exit from the naive state and marks distinct cell fate allocation during lineage specification.