Project description:The aim of this study is to characterise and compare the composition of the microbiota from sputum samples of cystic fibrosis sufferers from different centres. These data are part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:The link between human gut microbiota (a complex group of microorganisms including not only bacteria but also fungi, viruses, etc.,) and the physiological state is nowadays unquestionable. Metaproteomic has emerged as a useful technique to characterize this microbial community, not just taxonomically, but also focusing on specific biological processes carried out by gut microbiota that may have an effect in the host health or pathological state. Cystic fibrosis is a genetic disease in which the microbiota of the respiratory tract determines the patient's survival and differences in composition of gut microbiota of cystic fibrosis patients respect to healthy infants have been reported. In order to characterize this host-microbiota inter-relation, we carried out the metaproteomic study of 30 stool samples from infants with cystic fibrosis.
Project description:Application of a mass spectrometry -based approach to assess the lung microbiota composition and the associated metaproteomic functionality of subjects with cystic fibrosis
Project description:In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on Phe508del-CFTR-mediated chloride transport, also restores bicarbonate transport.
Project description:Cystic fibrosis (CF) is an inherited, multi-system disease caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a ubiquitous ion channel important for epithelial hydration. A direct consequence of this dysfunction is impaired mucociliary clearance, chronic airway infection and a persistent neutrophilic inflammatory response that results in progressive loss of lung function, development of respiratory failure and premature death. Partial restoration of CFTR function is now possible for most CF patients through mutation specific CFTR modulators. Ivacaftor monotherapy produces significant clinical improvement in CF patients with the G511D mutation. Dual therapy, combining ivacaftor with lumacaftor or tezacaftor, results in modest clinical improvements in patients homozygous for F508del. More recently, triple therapy with elexacaftor/tezacaftor/ivacaftor (ETI) has led to dramatic improvements in lung function and quality of life in patients homozygous and heterozygous for F508del. Sputum proteomics is a powerful research technique capable of identifying important airway disease mechanisms by interrogating the proteome, an entire set of proteins within biological samples. It has confirmed the central role of neutrophilic immune dysregulation in CF and non-CF bronchiectasis, particularly involving the release of antimicrobial proteins and neutrophil-extracellular traps (NETs), and through impaired anti-inflammatory mechanisms. These processes produce distinct molecular signatures within the sputum proteome that become increasingly abnormal with chronic airway infection and progressive lung disease severity. In CF patients, airway and systemic inflammatory cytokines potentially related to these signatures reduce with the various forms of CFTR modulation. To date, no studies of ETI therapy in CF lung disease have assessed large-scale change in protein expression using untargeted proteomics. We hypothesised that ETI therapy would shift the sputum proteome toward health, potentially normalising airway biology in people with CF. The objectives of this study were to investigate changes in the CF sputum proteome with the introduction of ETI, correlate these with changes in clinical markers of disease severity, and make comparisons with the sputum proteome in healthy controls and in repeat samples from CF patients not suitable for ETI therapy. We also explored which molecular pathways associated with CF lung disease did not change with ETI.
Project description:Rationale: Ivacaftor is a recently FDA-approved drug for the treatment of cystic fibrosis (CF) patients with at least one copy of the G511D mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The transcriptomic effect of Ivacaftor in CF patients remains unclear. Objectives: We aim to examine if and how the transcriptome of patients is influenced by Ivacaftor treatment and to determine if these data allow prediction of Ivacaftor responsiveness. Methods: We performed RNA-sequencing (RNA-seq) on PBMCs from CF patients and compared the transcriptomic changes before and after Ivacaftor treatments. Consensus clustering method is employed to stratify patients into sub-groups based on clinical responses post treatment, and determined differences in baseline gene expression. A random forest model is built to predict Ivacaftor responsiveness. Measurement and Main Results: We identified 239 genes that were significantly influenced by Ivacaftor in PBMC. The functions of these genes relate to cell differentiation, microbial infection, inflammation, Toll-like receptor signaling, and metabolism. We classified patients into “good” and “moderate” responders based on clinical response to Ivacraftor. We identified a panel of signature genes and built a statistical model for predicting CFTR modulator responsiveness. Despite a limited sample size, adequate prediction performance was achieved with an accuracy of 0.92. Conclusions: For the first time, the present study demonstrates profound transcriptomic impacts of Ivafactor in CF patients PBMCs and successfully built a statistical model for predicting the clinical responsiveness to Ivacaftor prior to treatment.
Project description:Effect of anaerobic growth condition on gene expression profile of Pseudomonas aeruginosa PA14 grown in cystic fibrosis sputum with 100 mM nitrate added
Project description:Background & Aims: Non-alcoholic fatty liver disease (NALFLD)-associated changes in gut microbiota are important drivers of disease progression toward fibrosis. Therefore, reversing microbiota alterations could ameliorate NAFLD progression. Oat beta-glucan, a non-digestible polysaccharides, has shown promising therapeutic effects on hyperlipidemia associated with NAFLD, but its impact on gut microbiota and most importantly NAFLD fibrosis remains unknown. Methods: We performed detailed metabolic phenotyping including body composition, glucose tolerance, and lipid metabolism as well as comprehensive characterization of the gut-liver axis in a western-style diet (WSD)-induced model of NAFLD and assessed the effect of a beta-glucan intervention on early and advanced liver disease. Gut microbiota was modulated using broad-spectrum antibiotic (Abx) treatment. Results: Oat beta-glucan supplementation did not affect WSD-induced body weight gain, glucose intolerance, and the metabolic phenotype remained largely unaffected. Interestingly, oat beta-glucan dampened NAFLD inflammation, associated with significantly reduced monocyte-derived macrophages (MoMFs) infiltration, fibroinflammatory gene expression, and strongly reduced fibrosis development. Mechanistically, this protective effect was not mediated by changes in bile acid composition or signaling, but was dependent on gut microbiota and was lost upon Abx treatment. Specifically, oat beta-glucan partially reversed unfavorable changes in gut microbiota, resulting in an expansion of protective taxa, including Ruminococcus, and Lactobacillus followed by reduced translocation of TLR ligands. Conclusions: Our findings identify oat beta-glucan as a highly efficacious food supplement that dampens inflammation and fibrosis development in diet-induced NAFLD. These results, along with its favorable dietary profile, suggest that it may be a cost-effective and well-tolerated approach to preventing NAFLD progression and should be assessed in clinical studies.
Project description:Cystic fibrosis (CF) remains a life-shortening disease without a definitive cure. Novel therapeutics targeting the causative defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are now in clinical use. Lumacaftor/ivacaftor is a CFTR modulator approved for patients homozygous for the CFTR mutation p.Phe508del, but there are wide variations in treatment responses preventing prediction of patient responses. We aimed to determine changes in gene expression related to treatment initiation and response. Whole-blood transcriptomics was performed using RNA-Seq in 20 patients with CF pre- and 6 months post-lumacaftor/ivacaftor (drug) initiation and 20 non-CF healthy controls. Correlation with clinical variables was performed by stratification via clinical responses. We identified 491 genes that were differentially expressed in CF patients (pre-drug) compared with non-CF controls. In addition, 36 genes were differentially expressed when comparing pre-drug to post-drug profiles within CF patients. Transcriptomics revealed novel pathways in CF patients at baseline compared to non-CF, and in clinical responders to lumacaftor/ivacaftor. Overall changes in gene expression post-lumacaftor/ivacaftor were modest compared to pre-drug CF profiles.
Project description:The impact of viral infections, on host microbiota composition and dynamics is poorly understood. Influenza A viruses (IAV) are common respiratory pathogens causing acute infections. In this study, we show dynamic changes in respiratory and intestinal microbiota over the course of a sublethal IAV infection in a mouse model. Using a combination of 16S rRNA gene specific next generation sequencing and qPCR as well as culturing of bacterial organ content, we found body site specific and transient microbiota responses to influenza infection. In the lower respiratory tract, we observed only minor qualitative changes in microbiota composition. In the small intestine, IAV induced robust depletion of bacterial content, disruption of mucus layer integrity and higher levels of antimicrobial peptides in Paneth cells. By RNAseq approach, we tried to analyze changes in transcriptomics of lung, and small intestine on the day of maximum changes to dissect possible causal players leading to the phentype observed.