Project description:Bifidobacteria constitute a specific group of commensal bacteria which inhabit the gastrointestinal tract of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilise several plant-derived carbohydrates that include cellodextrins, starch and galactan. In the current study, we investigate the ability of this strain to utilise the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate, sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3’ sialyllactose, a HMO, by Bifidobacterium bifidum PRL2010.
Project description:Bifidobacteria constitute commensal bacteria that commonly inhabit the mammalian gastro intestinal tract. The gut commensal Bifidobacterium breve UCC2003 was previously shown to utilise a variety of plant/diet-derived carbohydrates, including cellodextrin, starch and galactan. In the current study, we investigated the ability of this strain to utilize (parts of) a host-derived source of carbohydrate, namely the mucin glycoprotein. Here, we demonstrate that B. breve UCC2003 exhibits growth properties in a mucin-based medium, but only when in the presence of Bifidobacterium bifidum PRL2010, which is known to metabolize mucin. Based on HPAEC analysis, transcriptome data and insertion mutagenesis, it appears that B. breve UCC2003 sustains this improved survival in co-culture by cross-feeding on a combination of fucose, sialic acid and galactose-containing oligosaccharides.