Project description:Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify "novel" genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method.The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (?30%) were located in genomic region unique to strain 2336 (?18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations.
Project description:Small RNAs (sRNA), in association with the global chaperone regulator Hfq, positively or negatively regulate gene expression in bacteria. For this study, Histophilus somni sRNAs that bind to Hfq were identified and then partially characterized. The Hfq-associated sRNAs in H. somni were isolated and identified by co-immunoprecipitation using anti-Hfq antibody, followed by sRNA sequencing. Sequence analysis of the sRNA samples identified 100 putative sRNAs, out of which 16 were present in pathogenic strain 2336, but not in non-pathogenic strain 129Pt. Bioinformatic analyses suggested that the sRNAs HS9, HS79, and HS97 could bind to many genes putatively involved in virulence/biofilm formation. Furthermore, multi-sequence alignment of the sRNA regions in the genome revealed that HS9 and HS97 could interact with sigma 54, which is a transcription factor linked to important bacterial traits, including motility, virulence, and biofilm formation. Northern blotting was used to determine the approximate size, abundance and any processing events attributed to the sRNAs. Selected sRNA candidates were confirmed to bind Hfq, as determined by electrophoretic mobility shift assays using sRNAs synthesized by in vitro transcription and recombinant Hfq. The exact transcriptional start site of the sRNA candidates was determined by RNA ligase-mediated rapid amplification of cDNA ends, followed by cloning and sequencing. This is the first investigation of H. somni sRNAs that show they may have important regulatory roles in virulence and biofilm formation.
Project description:We used RNA-Seq to experimentally annotate H. somni strain 2336 and construct a single nucleotide resolution transcriptome map. Novel expressed elements were identified, and where appropriate, computational predictions of previously described gene boundaries were corrected.
Project description:We used RNA-Seq to experimentally annotate H. somni strain 2336 and construct a single nucleotide resolution transcriptome map. Novel expressed elements were identified, and where appropriate, computational predictions of previously described gene boundaries were corrected. Transcript profiling of a single sample by RNA-Seq
Project description:BACKGROUND:Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. RESULTS:The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. CONCLUSIONS:Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.
Project description:The sudden death of three calves, one diarrheic calf, and one aborted fetus from four farms in southern Brazil was investigated. Two Histophilus somni-associated syndromes were identified: systemic histophilosis (n = 4) and abortion (n = 1). The principal pathological findings included vasculitis, meningoencephalitis with thrombosis, necrotizing myocarditis, renal infarctions, hepatic abscesses, and bronchopneumonia. PCR assays were used to amplify specific amplicons of the ovine herpesvirus 2, bovine herpesvirus 1 and -5, Listeria monocytogenes, H. somni, and pestivirus; bovine group A rotavirus (BoRV-A) and bovine coronavirus (BCoV) were investigated in calves with diarrhea. H. somni DNA was amplified in tissues from all calves and the brain of the aborted fetus with pathological alterations consistent with histophilosis. All other PCR assays were negative; BoRV-A and BCoV were not identified. These findings confirm the participation of H. somni in the pathological alterations observed in this study and represent the first description of histophilosis in cattle from Brazil.
Project description:Histophilus somni is a Gram-negative bacterium that is associated with a disease complex (termed histophilosis) that can produce several clinical syndromes predominantly in cattle, but also in sheep. Histophilosis is well described in North America, Canada, and in some European countries. In Brazil, histophilosis has been described in cattle with respiratory, reproductive, and systemic disease, with only one case described in sheep. This report describes the occurrence of Histophilus somni-associated disease in sheep from Southern Brazil. Eight sheep with different clinical manifestations from five farms were investigated by a combination of pathological and molecular diagnostic methods to identify additional cases of histophilosis in sheep from Brazil. The principal pathological lesions were thrombotic meningoencephalitis, fibrinous bronchopneumonia, pulmonary abscesses, and necrotizing myocarditis. The main clinical syndromes associated with H. somni were thrombotic meningoencephalitis (n=4), septicemia (n=4), bronchopneumonia (n=4), and myocarditis (n=3). H. somni DNA was amplified from multiple tissues of all sheep with clinical syndromes of histophilosis; sequencing confirmed the PCR results. Further, PCR assays to detect Pasteurella multocida and Mannheimia haemolytica were negative. These findings confirmed the participation of H. somni in the clinical syndromes investigated during this study, and adds to the previous report of histophilosis in sheep from Brazil.