Project description:The present study was conducted to optimize fermentation parameters for apple wine production using Golden Delicious apples. Physicochemical analysis of the cultivar revealed a °Brix-acid ratio of 24.61 with ample amount of total and reducing sugars (9.6 and 6.03% w/v); making it a suitable substrate to produce ethanol. Microbiological analysis lead to isolation of a yeast strain (namely A2) which was molecularly identified and accessed at GenBank as S. cerevisiae KY069279. Ethanol fermentation optimization using response surface methodology revealed that a temperature of 20 °C, an inoculum size of 7.08 (%v/v) and diammonium hydrogen phosphate supplementation @ 154.4 mg/100 mL as optimum for apple wine production which lead to 10.73% (v/v) ethanol production with a desirability of 86.9%. Fresh wine having malic acid content of 1.87 (mg/100 mL) was subjected to malolactic fermentation (MLF) for 8 days using Leuconostoc oenos NCIM 2219 resulting in apple wine having 0.4 (mg/100 mL) malic acid. Sensory analysis of MLF and non-MLF apple wines categorised them as superior quality with average scores of 69.5 and 74.5, respectively. Gas chromatography-mass spectrometric analysis of apple wine revealed the presence of 38 volatile compounds including higher alcohols, acids, esters etc. The study thus revealed a process for apple wine preparation using an indigenous yeast and also optimized and compared malolactic and non-malolactic fermented ciders.
Project description:microRNAs(miRNAs) play critical regulatory roles mainly through cleaving targeted mRNAs or repressing gene translation during plant developments. Grapevine is amongst the most economically important fruit crops with whole genome available, and the study on grapevine miRNAs (Vv-miRNAs) have also been emphasized. However, the regulation mode of Vv-miRNAs on their target mRNAs during grapevine development has not been studied well, especially on a transcriptome-wide level. Here, six small RNA (sRNA) and mRNA libraries from various grapevine tissues were constructed for Illumina and Degradome sequencing. Subsequently, the spatiotemporal variation in the Vv-miRNAs’ regulation on their target genes was systematically analyzed. Totally, 242 known and 132 novel Vv-miRNAs were identified, and 193 target mRNAs including 103 for known and 90 for novel miRNAs were validated in one or more of tissues examined. The interesting finding was that over 50% of novel miRNAs were expressed exclusively in flowers or berries where they had tissue-specific cleavage roles on their target genes, especially, the breadth of their cleavage sites in flower tissues. Moreover, six novel miRNAs in berries were found to response to exogenous gibberellin (GA) and/or ethylene by real time RT-PCR (qRT-PCR) analysis, confirming their regulatory functions during berry development. Other finding was that about 93.6% of the known miRNAs possessed the high conservation in various tissues where their expression levels exhibited some dynamic variations during grapevine development. Significantly, it was found the phenomena that some Vv-miRNA families exist one key member that act as the main regulator of their target genes during grapevine development.