Project description:Identification of critical survival determinants of PDGF-driven proneural glioma. Results provided information about the genes and pathways that are regulated by PDGF signaling in PDGF-driven proneural glioma and led to the assessment of the importance of the USP1-ID2 axis in proneural glioma. Total RNA obtained from PDGF-driven glioma spheroid cells (PDGF-GSC) and primary tumors arising in the Gfap-tTa/Tre-PDGFB mouse model used in our study was analyzed to determine to which subtype of GBM these specimens belonged.
Project description:Identification of critical survival determinants of PDGF-driven proneural glioma. Results provided information about the genes and pathways that are regulated by PDGF signaling in PDGF-driven proneural glioma and led to the assessment of the importance of the USP1-ID2 axis in proneural glioma. Total RNA was obtained from untreated and Dox treated PDGF-driven glioma spheroid cells (PDGF-GSC) which had been isolated from the Gfap-tTa/Tre-PDGFB mouse model used in our study. The data were analyzed to determine the genes that are regulated by PDGF signaling in PDGF-driven glioma.
Project description:Informed by the genetic alterations observed in human GBM, we engineered a novel, lentiviral injection mediated, mouse model of proneural GBM.
Project description:Identification of critical survival determinants of PDGF-driven proneural glioma. Results provided information about the genes and pathways that are regulated by PDGF signaling in PDGF-driven proneural glioma and led to the assessment of the importance of the USP1-ID2 axis in proneural glioma.
Project description:Identification of critical survival determinants of PDGF-driven proneural glioma. Results provided information about the genes and pathways that are regulated by PDGF signaling in PDGF-driven proneural glioma and led to the assessment of the importance of the USP1-ID2 axis in proneural glioma.
Project description:As many other tumors, a subset of gliobastoma is thought to be maintained by a restricted population of cancer cells, stem-like cells that express CD133 transmembrane protein. Expression levels of CD133 gene has been linked to a poor prognostic molecular subgroup and is not overexpressed by the PDGF-driven proneural group. Thus, the significance of CD133+ cells for gliomagenesis of the proneural group is undetermined. In addition, the role of the CD133 protein remains elusive and controversial, which results from the difficult isolation of CD133+ cells that has largely relied on the use of antibodies to ill-defined glycosylated epitopes of CD133. Here, we used a knockin lacZ reporter mouse, Prom1lacZ/+, to track Prom1+ cells in the brain and found that Prom1 (prominin1, murine CD133 homologue) is expressed by cells that co-express markers characteristic of neuronal, glial and vascular lineage phenotype. In proneural tumors derived from injection of RCAS-PDGF into the brain of tv-a;Ink4a-Arf-/- Prom1lacZ/+ mice, Prom1+ cells co-express markers for astrocytes and endothelial cells. Therefore, we characterize the tumor propagation in a murine model and found that the mice co-transplanted with Prom1 endothelium and proneural tumor spheres cells had significant tumor burden and vascular proliferation (angiogenesis). Specific genes in Prom1 endothelium are identified that code for endothelial signaling modulators that most likely support proneural tumor progression and can be potential targets for anti-angiogenic therapy. Cells were sorted via FACS to obtain a population of CD31+CD133- cells and a population of CD31+CD133+ cells. Total RNA was extracted from each population and gene expression was assayed on Affymetrix Mouse 430 2.0 arrays with one array per cell population.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Background Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM). Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors. Methodology/Principal Findings To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival. Conclusions/Significance This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies. Gene expression profiling was performed on 20 tumors (12 Ptenf/f and 8 Ptenf/f; p53f/f) and 3 normal brains from mice. End stage tumors were used for expression array analysis. The platform used was Affymetrix GeneChip Mouse Genome 430A 2.0 Array. The microarray labeling, hybridization and quality controls were performed by following Affymetrix protocol.