Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from different Capsicum annuum tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features, such as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from different Capsicum annuum tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features, such as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, flowers and fruit of Capsicum annuum. Total RNA was isolated using the TriReagent (Molecular Research Center) for leaves and flowers and the Plant RNA Purification Reagent (Invitrogen) for fruit, and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Barbara Baker for providing the plant material, as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:Pepper fruits at four different developmental stages were collected: early fruit [EF; 1 cm long; 7 days after pollination (dap)], mature green fruit (MG; 6-7 cm length; 20 dap), breaking or turning red fruit (BR; fruit are partially red; 35 dap), and red ripe fruit (RR; fully red; 40 dap). Tomato fruits at corresponding developmental stages were also collected: EF (less than 1cm; 7 dap), MG (40 dap), BR (50 dap), and RR (55 dap). For the monitoring of fruit-specific and fruit ripening-related genes, we did array hybridization by using the leaves as a common reference and each corresponding fruit developmental stage sample.