Project description:Mutations in APC or β-catenin that cause aberrant activation of Wnt signaling are responsible for the initiation of colorectal tumor development. LGR5 is specifically expressed in stem cells of the intestine, stomach and hair follicle, and plays essential roles in maintaining tissue homeostasis. LGR5-positive stem cells have been shown to be responsible for the intestinal adenoma initiated by some mutations in APC . Furthermore, it has recently been reported that Lgr5, which is associated with the Frizzled/Lrp Wnt receptor complex, interacts with R-spondins and thereby activates Wnt signaling. However, the function of LGR5 in colorectal tumorigenesis has been unclear. Here we show that LGR5 is required for the tumorigenicity of colorectal cancer cells. We also show that the transcription factor GATA6 directly enhances the expression of LGR5. DLD1 cells were infected with a lentivirus expressing an shRNA targeting GATA6 or LGR5.
Project description:Lgr5+ stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF and Notch signals to neighboring Lgr5+ stem cells. While the colon lacks Paneth cells, Deep Crypt Secretory (DCS) cells are intermingled with Lgr5+ stem cells at crypt bottoms. Here, we report Reg4 as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon mini-gut formation. In agreement, sorted Reg4+ DCS cells promote organoid formation of single Lgr5+ colon stem cells. Stem cells are forced to generate DCS cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4+ DCS cells serve as Paneth cell equivalents in the colon crypt niche.
Project description:Recently, three-dimensional small intestinal organoids (enteroids) have been developed from cultures of intestinal stem cells which differentiate in vitro to generate all the differentiated epithelial cell types associated with the intestine and mimic the structural properties of the intestine observed in vivo. Small-molecule drug treatment can skew organoid epithelial cell differentiation towards particular lineages, and these skewed enteroids may provide useful tools to study specific epithelial cell populations, such as goblet and Paneth cells. However, the use and characterisation of enteroid models has not yet been fully explored, such that the extent to which differentiated epithelial cell populations in these skewed enteroids represent their in vivo counterparts is not fully understood. In this study, we have performed label-free quantitative proteomics to determine whether skewing murine enteroid cultures towards the goblet or Paneth cell lineages results in changes in abundance of proteins associated with these cell lineages in vivo. Our data confirm that skewed enteroids recapitulate important features of the in vivo gut environment, confirming that they can serve as useful models for the investigation of normal and disease processes in the intestine. Furthermore, by comparison of our mass spectrometry data with histology data contained within the Human Protein Atlas, we identify putative novel markers for goblet and Paneth cells.
Project description:The mammalian intestine is one of the most rapidly self-renewing tissues, driven by actively cycling stem cells residing at the crypt bottom . Together with stromal cells, Paneth cells form a major element of the niche microenvironment that provides various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. With 19 family members, different Wnt ligands can selectively activate βcatenin dependent (canonical) or independent (non-canonical) signaling. Here, we report that Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and non-canonical Wnt (Wnt/PCP) signaling, and their function is required for Paneth cell progenitor differentiation. We found that Daam1/2 interacts with the Wnt antagonist Rnf43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing Rnf43-dependent endo-lysosomal degradation of the ubiquitinated Wnt receptor, Frizzled (Fzd). Moreover, single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion, as a result of defective Wnt/PCP signaling. Taken together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and non-canonical Wnt signaling, the regulation of which is fundamental for specifying an adequate number of Paneth cells while maintaining intestinal stem cell homeostasis.
Project description:Mutations in APC or β-catenin that cause aberrant activation of Wnt signaling are responsible for the initiation of colorectal tumor development. LGR5 is specifically expressed in stem cells of the intestine, stomach and hair follicle, and plays essential roles in maintaining tissue homeostasis. LGR5-positive stem cells have been shown to be responsible for the intestinal adenoma initiated by some mutations in APC . Furthermore, it has recently been reported that Lgr5, which is associated with the Frizzled/Lrp Wnt receptor complex, interacts with R-spondins and thereby activates Wnt signaling. However, the function of LGR5 in colorectal tumorigenesis has been unclear. Here we show that LGR5 is required for the tumorigenicity of colorectal cancer cells. We also show that the transcription factor GATA6 directly enhances the expression of LGR5.
Project description:We found that western diet consumption resulted in decrease in the percentage of normal Paneth cell population in wild type mice, indicating that western diet negatively regulates Paneth cell homeostasis. We performed transcriptional profiling to identify molecular mechanisms associated with Paneth cell defect in wild type mice exposed to western diet. Male mice were used at 4-5 weeks of age, and were fed with either standard or western diet. The whole ileum of the mice were harvested for transcriptomic analysis after completing 8 weeks of diet consumption.
Project description:Paneth cells are important for maintaining epithelial cell renewal and modulating innate immune function in the intestine through secretion of growth factors and antimicrobial peptides, which help sustain epithelial stem and progenitor cells and contribute to the intestinal barrier and protection against pathogenic bacteria. Here we show that the intestine-enriched miR-802 is a central regulator of intestinal epithelial cell proliferation and Paneth cell function. Genetic ablation of mir-802 in mice leads to amplified ROS generation and Notch/Wnt signaling, increased intestinal epithelial turnover, impaired enterocyte differentiation and nutrient uptake, and increased enterocyte apoptosis. Mice lacking mir-802 in the intestine also exhibit Paneth cell expansion, increased antimicrobial peptide production, and protection against Salmonella infection. This phenotype relies on the miR-802 target gene Tmed9.
Project description:Paneth cells are antimicrobial peptide-secreting cells located at the base of the crypts of the small intestine. The proteome of Paneth cells is not well defined because of their co-existence with stem cells making it difficult to culture Panth cells alone in vitro. Using a simplied toluidine blue O method for staining mouse intestinal tissue, laser capture microdissection (LCM) to isolate cells from the crypt region and surfactant assisted one pot protein digestion, we identified more than 1,300 proteins from crypts equivalent to 18,000 cells. Compared with the proteomes of villi and smooth muscle regions, the crypt proteome is highly enriched in defensins, lysozymes and other antimicrobial peptides that are characteristic of Paneth cells. The sensitivity of the LCM-based proteomics approach was also assessed using a smaller number of cell equivalent tissues, a comparable proteomic coverage can be achieved with 3,600 cells. This work is the first proteomics study of intestinal tissue enriched with Paneth cells. The simplied workflow enables profiling of Paneth cell associated pathological changes at the proteome level directly from frozen intestinal tissue. It may also be useful for proteomics studies of other spatially resolved cell types from other tissues.
Project description:Aberrant CpG methylation is a universal trait of cancer cell genomes and can result in epigenetic modulation of gene activity; however, at which stages tumour-specific epigenetic patterns arise is unknown. Here, we analyse the methylome of APCM in mouse intestinal adenoma as a model of intestinal cancer initiation, and inventory a map of over 13,000 adenoma-specific recurrent differentially methylated regions (DMRs). We find that multiple genes coding for Polycomb proteins are upregulated in adenoma, and concomitantly, hypermethylated DMRs form preferentially at Polycomb target sites. We establish that DMRs are absent from proliferating intestinal epithelial cells or intestinal stem cells, and thus arise de novo after loss of APC. Importantly, a core set of DMRs is conserved in human colon cancer, defining a class of early epigenetic alterations that are distinct from known sets of epigenetically silenced tumour suppressors. The data presented suggests a sequence of events that leads to an altered methylome of colon cancer cells, and may allow more specific selection of clinical epigenetic biomarkers. Analysis of the methylome and RNA expression in adenoma of Apc-Min/+ mutant mice and of normal intestine in Apc-Min/+ and Apc-+/+ wild type mice.