Project description:Rationale: Emerging evidence suggests that disease vulnerability is expressed throughout the airways; the so-called “unified airway hypothesis” but the evidence to support this is predominantly indirect. Objectives: To establish the transcriptomic profiles of the upper and lower airway and determine their level of similarity irrespective of airway symptoms (wheeze) and allergy. Methods: We performed RNA-sequencing on upper and lower airway epithelial cells from 63 children with or without wheeze and accompanying atopy, utilizing differential gene expression and gene co-expression analyses to determine transcriptional similarity. Results: We observed ~91% homology in the expressed between the two sites. When co-expressed genes were grouped into modules relating to biological functions, all were found to be conserved between the two regions, resulting in a consensus network containing 16 modules associated with ribosomal function, metabolism, gene expression, mitochondrial activity and anti-viral responses through interferon activity. Although symptom associated gene expression changes were more prominent in the lower airway, they were reflected in nasal epithelium and included; IL1RL1, PTGS1, CCL26 and POSTN. Through network analysis we identified a cluster of co-expressed genes associated with atopic-wheeze in the lower airway, which could equally distinguish atopic and non-atopic phenotypes in upper airway samples. Conclusions: We show that the upper and lower airway are significantly conserved in their transcriptional composition, and that variations associated with disease are present in both nasal and tracheal epithelium. Clinical Implication: Findings from this study supporting a unified airway imply that clinical insight regarding the lower airway in health and disease can be gained from studying the nasal epithelium.
Project description:Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as âTh2 highâ based on lower airway Th2 gene signature expression. Consistent with this classification, âTh2 highâ subjects displayed elevated total IgE and blood eosinophil levels relative to âTh2 lowâ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as âTh2 highâ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as âTh2 highâ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma. Upper airway (nasal) and lower airway (bronchial) epithelial brushings obtained from a cohort of 54 allergic asthmatics and 30 matched healthy controls were profiled by gene expression by microarray. Subjects were assayed for gene expression, serum total IgE, blood eosinophils and serum periostin.
Project description:Unlike other respiratory viruses, SARS-CoV-2 disproportionately causes severe disease in older adults and only rarely in children. To investigate whether differences in the upper airway immune response could contribute to this disparity, we compared nasopharyngeal gene expression in 83 children (<19-years-old; 38 with SARS-CoV-2, 11 with other respiratory viruses, 34 with no virus) and 154 adults (>40-years-old; 45 with SARS-CoV-2, 28 with other respiratory viruses, 81 with no virus). Expression of interferon-stimulated genes (ISGs) was robustly activated in both children and adults with SARS-CoV-2 compared to the respective non-viral groups, with only relatively subtle distinctions. Children, however, demonstrated markedly greater upregulation of pathways related to B cell and T cell activation and proinflammatory cytokine signaling, including TNF, IFNγ, IL-2 and IL-4 production. Cell type deconvolution confirmed greater recruitment of B cells, and to a lesser degree macrophages, to the upper airway of children. Only children exhibited a decrease in proportions of ciliated cells, the primary target for SARS-CoV-2, upon infection with the virus. These findings demonstrate that children elicit a more robust innate and adaptive immune response to SARS-CoV-2 infection in the upper airway that likely contributes to their protection from severe disease in the lower airway.
Project description:Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as ‘Th2 high’ based on lower airway Th2 gene signature expression. Consistent with this classification, ‘Th2 high’ subjects displayed elevated total IgE and blood eosinophil levels relative to ‘Th2 low’ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as ‘Th2 high’ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as ‘Th2 high’ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma.
2015-10-23 | GSE41861 | GEO
Project description:Upper and lower airway microbiomes in children with and without asthma
| PRJNA601757 | ENA
Project description:Upper and lower airway host transcriptomes in children with and without asthma
Project description:Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers