Project description:We used an in vitro pool based strategy to probe the sequence and structural requirements for mRNA target recognition by the yeast tRNA pseudouridine synthase Pus1.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 kidney tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 liver tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 heart tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 brain tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 M1-skeletal muscle (red, slow) tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 M2-skeletal muscle (white, fast) tissue samples: 4 biological replicates each.
Project description:Pseudouridine (Ψ), the isomer of uridine, is ubiquitous in most RNA families, including tRNA, rRNA and mRNA. Pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs, but whether it can modify other RNA types, including mRNA, remains elusive. Here, we determine the single particle cryo-EM structure of apo and tRNA-bound human PUS3, showing how it forms a symmetric homodimer that recognizes the characteristic L-shape of tRNA across two distinct interaction interfaces. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and used Pseudo-seq to detect Ψ sites in the transcriptome. Although PUS1-dependent sites were detectable in tRNA and mRNA, we did not find any evidence for PUS3 modifying other RNA classes than tRNA. In summary, our work provides the molecular basis for PUS3-mediated tRNA modification in humans and aids in understanding how impairments in its activity lead to intellectual disabilities through defects in tRNA modifications.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity.