Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Comparison of genome-wide gene expression between humans living in areas of high levels of air pollution and less polluted areas. Experiment Overall Design: The study investigated differential gene expression in peripheral blood from 23 children and 12 adults from a region of residence with high levels of air pollution as compared to 24 children and 12 adults from a less-polluted area.Two conditions: living in the polluted or in the less-polluted area. One individual per array, hybridized against a common reference sample
Project description:Comparison of gene expression profiles of Caenorhabditis elegans fed a complex microbiota (either a synthetic community or in soil) or a standard Escherichia coli diet. We find that immune and digestion genes are up-regulated in C. elegans that were fed a complex microbiota.
Project description:This concerns a cross-sectional cohort study of 356 Dutch community-dwelling older adults to study the association of the oral microbiota with poor taste, poor smell, poor appetite and undernutrition. Data-collection consisted of body measurements (incl. body weight, height, and body impedance analysis), extensive appetite and food frequency questionnaires, taste and smell tests, and a tongue swab. The oral microbiota composition was assessed with 16S rRNA sequencing.
Project description:The link between the gut microbiota of a human being (a complex group of microorganism including not only bacteria but also fungi, viruses, etc.,) that form an ecosystem in his gastrointestinal tract and his physiological state is nowadays unquestionable. Metaproteomics has emerged as a useful technique to characterize this microbial community, not just taxonomically, but also focusing on specific biological processes carried out by gut microbiota that may have an effect in the host health or pathological state. In order to characterize this host-microbiota inter-relation, we carried out the metaproteomic study of 6 stool samples from 6 healthy adults. A total of 37 080 peptide sequences and 10 686 protein groups were identified in this study. Regarding taxonomic information, we found a total of 247 taxa among 105 were species. Interesting contributions of microbiota metabolism to human host physiology has also been described.