Project description:Purpose: RNase Y is a major enzyme responsible for mRNA degradation in Streptococcus pyogenes. The goals of this study are to understand whether RNase Y plays a role in operon transcription of S. pyogenes NZ131 by using RNA-seq analysis. Methods: S. pyogenes mRNA profiles of wild type (WT) and RNase Y mutant (∆rny) were generated by deep sequencing, in duplicate, using Illumina Hiseq 2000. The sequence reads were aligned to the S. pyogenes genome using Bowtie2. The aligned files were sorted to BAM format and indexed using Samtools. The read depth of each base was derived from BAM files using BEDtools. Operon organization of S. pyogenes WT and ∆rny strains were predicted based on base reads. Results: A total of 11 to 12 billion reads were obtained from each sample. More than 99% of these reads were mapped to the S. pyogenes genome. Predictions of operon organization using WT and ∆rny samples showed little difference between the two strains. Conclusions: Our result shows that the mutation of RNase Y does not affect the operon organization of S. pyogenes NZ131.
Project description:In Streptococcus pyogenes, mutation of GidA results in avirulence despite the same growth rate as the wild type. To understand the basis of this effect, global transcription profiling was conducted. Keywords: Wild type vs. GidA mutant Streptococcus pyogenes
Project description:Streptococcus pyogenes (Group A streptococcus, GAS) is an important human pathogen that causes a variety of infectious diseases and sequelae. Recent studies showed virulence factor expression was controlled at multiple levels, including the post-transcriptional regulation. In this study, we examined the global half-lives of S. pyogenes mRNAs and explored the role RNase Y played in mRNA metabolism with microarray analysis. key word: genetic modification
Project description:In Streptococcus pyogenes, mutation of the peroxide sensor PerR results in avirulence despite producing hyper-resistance to peroxide stress. To understand the basis of this effect, global transcription profiling was conducted. Keywords: Study of the regulation of gene expression by PerR
Project description:Streptococcus pyogenes (Group A streptococcus, GAS) is an important human pathogen that causes a variety of infectious diseases and sequelae. Recent studies showed virulence factor expression was controlled at multiple levels, including the post-transcriptional regulation. In this study, we examined the global half-lives of S. pyogenes mRNAs and explored the role RNase Y played in mRNA metabolism with microarray analysis. key word: genetic modification Streptococcus pyogenes NZ131 wild-type cells and ?rny strains were grown in C-medium until late exponential phase. Rifampicin was added to the cell culture and samples were collected before and after rifampicin addition. The transcriptional profile of the whole genome before and after rifampicin addition was examined with microarray. Please note that mRNA decay assay resulted in considerable variations in the datasets. Samples were taken after rifampicin addition and subsequent incubation for different time intervals. During that time no new RNA is produced and the remaining RNA is degraded to various degrees.
Project description:Whole genone expression profile comparing wild-type NZ131 to serR deletion mutant, grown in C-medium Mutants and interpretation are described further in the manuscript to be submitted: LaSarre and Federle, 2010. Title: Regulation and Consequence of Serine Catabolism in Streptococcus pyogenes. A two chip study using total RNA recovered from three separate wild-type cultures of Streptococcus pyogenes NZ131 and three separate mutant cultures of Streptococcus pyogenes NZ131 seR-, pooled following RNA extraction
Project description:The speB gene of Streptococcus pyogenes has a long 5' UTR with unknown functions. Preliminary studies showed that the partial mutation of this region led to altered expression patterns of the speB gene and ropB, its upstream gene. In this study, we used microarray to examine the effect of speB 5' UTR mutation on the S. pyogenes transcriptome.
Project description:Transcriptional profiling of Streptococcus pyogenes MGAS5005 cells comparing control untreated GAS cells with GAS cells exposed to 4uM heme for 1.5 h