Project description:Naïve CD4+ T-helper cells differentiate into Th2 effector cells during asthma and helminth (worm) infection. Here, we report that mice lacking the transcription factor Bcl11b in mature CD4+ T-cells are incapable of mounting an effective Th2 response in asthma and worm infection, with a major reduction of Th2 cytokine secretion and GATA3 expression. We found that Bcl11b exerts its role in Th2 differentiation through several avenues: (1) association with intronic regions at the Gata3 locus, sustaining GATA3 expression; (2) binding to and restricting chromatin accessibility at the Il4 silencer, located at hypersensitivity site (HS) IV; and (3) restricting Runx3 expression by association with a regulatory region 5’ of Runx3. Thus, in the absence of Bcl11b, the reduction in GATA3 levels combined with increased Runx3 levels and activity at Il4 HS IV silencer and consequently diminished IL-4 expression. This results in reduced chromatin opening at the Th2 locus control region (LCR), Il13 and Il5 promoters, subsequently preventing expression of Th2 cytokine genes and Th2 differentiation. Our results establish a novel role for Bcl11b in the regulatory loop critical for licensing the Th2 program in vivo.
Project description:Naïve CD4+ T-helper cells differentiate into Th2 effector cells during asthma and helminth (worm) infection. Here, we report that mice lacking the transcription factor Bcl11b in mature CD4+ T-cells are incapable of mounting an effective Th2 response in asthma and worm infection, with a major reduction of Th2 cytokine secretion and GATA3 expression. We found that Bcl11b exerts its role in Th2 differentiation through several avenues: (1) association with intronic regions at the Gata3 locus, sustaining GATA3 expression; (2) binding to and restricting chromatin accessibility at the Il4 silencer, located at hypersensitivity site (HS) IV; and (3) restricting Runx3 expression by association with a regulatory region 5’ of Runx3. Thus, in the absence of Bcl11b, the reduction in GATA3 levels combined with increased Runx3 levels and activity at Il4 HS IV silencer and consequently diminished IL-4 expression. This results in reduced chromatin opening at the Th2 locus control region (LCR), Il13 and Il5 promoters, subsequently preventing expression of Th2 cytokine genes and Th2 differentiation. Our results establish a novel role for Bcl11b in the regulatory loop critical for licensing the Th2 program in vivo.
Project description:Naïve CD4+ T-helper cells differentiate into Th2 effector cells during asthma and helminth (worm) infection. Here, we report that mice lacking the transcription factor Bcl11b in mature CD4+ T-cells are incapable of mounting an effective Th2 response in asthma and worm infection, with a major reduction of Th2 cytokine secretion and GATA3 expression. We found that Bcl11b exerts its role in Th2 differentiation through several avenues: (1) association with intronic regions at the Gata3 locus, sustaining GATA3 expression; (2) binding to and restricting chromatin accessibility at the Il4 silencer, located at hypersensitivity site (HS) IV; and (3) restricting Runx3 expression by association with a regulatory region 5’ of Runx3. Thus, in the absence of Bcl11b, the reduction in GATA3 levels combined with increased Runx3 levels and activity at Il4 HS IV silencer and consequently diminished IL-4 expression. This results in reduced chromatin opening at the Th2 locus control region (LCR), Il13 and Il5 promoters, subsequently preventing expression of Th2 cytokine genes and Th2 differentiation. Our results establish a novel role for Bcl11b in the regulatory loop critical for licensing the Th2 program in vivo.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:GATA-binding protein 3 (GATA3) acts as the master transcription factor for type 2 T helper (Th2) cell differentiation and function. However, it is still elusive how GATA3 function is precisely regulated in Th2 cells. Here, we report that the transcription factor B cell lymphoma 11b (Bcl11b), a previously unknown component of GATA3 transcriptional complex, is involved in GATA3-mediated gene regulation. Bcl11b binds to GATA3 through protein-protein interaction, and they co-localize at many important cis-regulatory elements in Th2 cells. The expression of type 2 cytokines, including IL-4, IL-5 and IL-13, is up-regulated in Bcl11b-deficient Th2 cells both in vitro and in vivo; such up-regulation is completely GATA3-dependent. Genome-wide analyses of Bcl11b- and GATA3-regulated gene (from RNA-Seq), co-binding pattern (from ChIP-Seq), and Bcl11b-mediated epigenetic changes (in H3K27ac and DHSs) suggest that GATA3/Bcl11b complex is involved in limiting Th2 gene expression, as well as in inhibiting non-Th2 gene expression. Thus, Bcl11b controls both GATA3-mediated gene activation and repression in Th2 cells.