Project description:Potential use of environmental DNA haplotyping for estimating the dispersal of an invasive fish, bluegill sunfish (Lepomis macrochirus), in Japan
Project description:Proctor2005 - Actions of chaperones and their
role in ageing
This model is described in the article:
Modelling the actions of
chaperones and their role in ageing.
Proctor CJ, Soti C, Boys RJ,
Gillespie CS, Shanley DP, Wilkinson DJ, Kirkwood TB.
Mech. Ageing Dev. 2005 Jan; 126(1):
119-131
Abstract:
Many molecular chaperones are also known as heat shock
proteins because they are synthesised in increased amounts
after brief exposure of cells to elevated temperatures. They
have many cellular functions and are involved in the folding of
nascent proteins, the re-folding of denatured proteins, the
prevention of protein aggregation, and assisting the targeting
of proteins for degradation by the proteasome and lysosomes.
They also have a role in apoptosis and are involved in
modulating signals for immune and inflammatory responses.
Stress-induced transcription of heat shock proteins requires
the activation of heat shock factor (HSF). Under normal
conditions, HSF is bound to heat shock proteins resulting in
feedback repression. During stress, cellular proteins undergo
denaturation and sequester heat shock proteins bound to HSF,
which is then able to become transcriptionally active. The
induction of heat shock proteins is impaired with age and there
is also a decline in chaperone function. Aberrant/damaged
proteins accumulate with age and are implicated in several
important age-related conditions (e.g. Alzheimer's disease,
Parkinson's disease, and cataract). Therefore, the balance
between damaged proteins and available free chaperones may be
greatly disturbed during ageing. We have developed a
mathematical model to describe the heat shock system. The aim
of the model is two-fold: to explore the heat shock system and
its implications in ageing; and to demonstrate how to build a
model of a biological system using our simulation system
(biology of ageing e-science integration and simulation
(BASIS)).
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000091.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Environmental stress, such as oxidative or heat stress, induces the activation of the heat shock response
(HSR) and leads to an increase in the heat shock proteins (HSPs) level. These HSPs act as molecular
chaperones to maintain cellular proteostasis. Controlled by highly intricate regulatory mechanisms,
having stress-induced activation and feedback regulations with multiple partners, the HSR is still
incompletely understood. In this context, we propose a minimal molecular model for the gene
regulatory network of the HSR that reproduces quantitatively different heat shock experiments both
on heat shock factor 1 (HSF1) and HSPs activities. This model, which is based on chemical kinetics
laws, is kept with a low dimensionality without altering the biological interpretation of the model
dynamics. This simplistic model highlights the titration of HSF1 by chaperones as the guiding line of
the network. Moreover, by a steady states analysis of the network, three different temperature stress
regimes appear: normal, acute, and chronic, where normal stress corresponds to pseudo thermal
adaption. The protein triage that governs the fate of damaged proteins or the different stress regimes
are consequences of the titration mechanism. The simplicity of the present model is of interest in
order to study detailed modelling of cross regulation between the HSR and other major genetic
networks like the cell cycle or the circadian clock.
Sivéry, A., Courtade, E., Thommen, Q. (2016). A minimal titration model of the mammalian dynamical heat shock response. Physical biology, 13(6), 066008.