Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed â??pneumotypesâ??: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals. Cross-sectional Multicenter cohort. BAL of 49 healthy subjects from three cohort had their lower airway microbiome assessed by 16S rDNA sequencing and microbial gene content (metagenome) was computationally inferred from taxonomic assignments. The amplicons from total 100 samples are barcoded; the barcode and other clinical characteristics (e.g. inflammatory biomarkers and metabolome data) for each sample are provided in the 'Pneumotype.sep.Map.A1.txt' file.
Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed “pneumotypes”: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals.
Project description:In this study, we assessed lower airway microbiome from a cohort of patients to determine whether specific microbiome taxa correlate with with specific metabolic activities. In a subset of 12 patients, transcriptomic expression were analyzed to compare host mucosa immune response We collected peripheral airway brushings from the 12 subjects whose lung microbiome were analyzed; Total RNA were obtained from the peripheral airway epithelium.
Project description:Seasonal influenza outbreaks represent a large burden for the healthcare system as well as the economy. While the role of the microbiome in the context of various diseases has been elucidated, the effects on the respiratory and gastrointestinal microbiome during influenza illness is largely unknown. Therefore, this study aimed to characterize the temporal development of the respiratory and gastrointestinal microbiome of swine using a multi-omics approach prior and during influenza infection. Swine is a suitable animal model for influenza research, as it is closely related to humans and a natural host for influenza viruses. Our results showed that IAV infection resulted in significant changes in the abundance of Moraxellaceae and Pasteurellaceae families in the upper respiratory tract. To our surprise, temporal development of the respiratory microbiome was not affected. Furthermore, we observed significantly altered microbial richness and diversity in the gastrointestinal microbiome after IAV infection. In particular, we found increased abundances of Prevotellaceae, while Clostridiaceae and Lachnospiraceae decreased. Furthermore, metaproteomics showed that the functional composition of the microbiome, known to be robust and stable under healthy conditions, was heavily affected by the influenza infection. Metabolome analysis proved increased amounts of short-chain fatty acids in the gastrointestinal tract, which might be involved in faster recovery. Furthermore, metaproteome data suggest a possible immune response towards flagellated Clostridia induced during the infection. Therefore, it can be assumed that the respiratory infection with IAV caused a systemic effect in the porcine host and microbiome.
Project description:<p><b>Background</b>: The lung microbiome of healthy individuals frequently harbors oral organisms. Despite evidence that micro-aspiration is commonly associated with smoking-related lung diseases, the effects of lung microbiome enrichment with upper airway taxa on inflammation has not been studied. We hypothesize that the presence of oral microorganisms in the lung microbiome is associated with enhanced pulmonary inflammation.</p> <p><b>Methods</b>: We sampled bronchoalveolar lavage (BAL) from the lower airways of 29 asymptomatic subjects (9 never-smokers, 14 former-smokers and 6 current-smokers). We quantified, amplified, and sequenced 16S rRNA genes from BAL samples by qPCR and 454 sequencing. Pulmonary inflammation was assessed by exhaled nitric oxide (eNO), BAL lymphocytes and neutrophils.</p> <p><b>Results</b>: BAL had lower total 16S than supraglottic samples and higher than saline background. Bacterial communities in the lower airway clustered in two distinct groups that we designated as pneumotypes. The rRNA gene concentration and microbial community of the first pneumotype was similar to that of the saline background. The second pneumotype had higher rRNA gene concentration and higher relative abundance of supraglottic-characteristic taxa (SCT), such as Veillonella and Prevotella, and we called it pneumotypeSCT. Smoking had no effect on pneumotype allocation, alpha or beta diversity. PneumotypeSCT was associated with higher BAL lymphocyte-count (p = 0.007), BAL neutrophil-count (p = 0.034) and eNO (p = 0.022).</p> <p><b>Conclusion</b>: A pneumotype with high relative abundance of supraglottic-characteristic taxa is associated with enhanced subclinical lung inflammation. </p>
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice toM-BM- dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection wasM-BM- associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile cecal gut bacteria from 29 mice: 7 controls, 5 gavaged with dust from homes with pets, 5 gavaged with dust from homes with no pets, 4 CRA-challenged, 4 gavaged with L. johnsonii, and 4 gavaged with L. johnsonii prior to CRA challenge. The PhyloChip was also used to profile 1 house dust sample collected from a home with dogs
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice toM-BM- dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection wasM-BM- associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile cecal gut bacteria from 29 mice: 7 controls, 5 gavaged with dust from homes with pets, 5 gavaged with dust from homes with no pets, 4 CRA-challenged, 4 gavaged with L. johnsonii, and 4 gavaged with L. johnsonii prior to CRA challenge. The PhyloChip was also used to profile 1 house dust sample collected from a home with dogs
Project description:Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development and dog-ownership is associated with a distinct house dust microbial exposure. Here we demonstrate, using murine models, that exposure of mice toM-BM- dog-associated house dust protects against ovalbumin or cockroach allergen mediated airway pathology. Protected animals exhibited significant reductions in the total number of airway T cells, down-regulation of Th2-related airway responses as well as mucin secretion. Following house dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii mediated protection wasM-BM- associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct GI microbiome composition. Moreover the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile cecal gut bacteria from 29 mice: 7 controls, 5 gavaged with dust from homes with pets, 5 gavaged with dust from homes with no pets, 4 CRA-challenged, 4 gavaged with L. johnsonii, and 4 gavaged with L. johnsonii prior to CRA challenge. The PhyloChip was also used to profile 1 house dust sample collected from a home with dogs