Project description:Bread wheat is the major staple food of the world with a complex hexaploidy genome. The precise spatiotemporal gene expression is orchestrated by enhancers, which lack general sequence features and thus are difficult to be located, especially in large genomes. Epigenomic architecture, including chromatin openness and active chromatin marks, has been widely used to characterize enhancers. However, an active chromatin environment does not necessarily mean an active enhancer. Recently, enhancer RNAs (eRNAs), the hallmark for active enhancers, have been detected by nascent RNA sequencing in both Drosophila and mammalian. In order to answer whether plant enhancers could be transcribed, we investigated the transcriptome of bread wheat via two nascent RNA sequencing methods, GRO-seq and pNET-seq combining with epigenome profiling. Our study demonstrates the presence and wide distribution of transcription at intergenic enhancers, which accurately reflects high enhancer activity, shedding light on the complex gene expression regulation across subgenomes in bread wheat.
Project description:Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoalleles, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ânullisomic-tetrasomicâ lines) with next generation deep sequencing of gene transcripts (RNA-seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative homoeoallelic contribution to gene expression. We obtained mRNA-Seq datasets from non-normalized cDNA libraries created from shoot and root tissues of the euploid bread wheat cultivar Chinese Spring, from which the nullitetra lines are derived, from complete sets of chromosome 1 and 5 nullitetras, and from extant relatives of the diploid A (Triticum urartu) and D (Aegilops tauschii) genome donors, herein referred to as A and D genome diploids
Project description:We performed ChIP-seq for the meiotic strand exchange protein DMC1, which marks an early stage in the meiotic recombination pathway, and the chromosome axis protein ASY1, which promotes interhomolog synapsis and recombination in plants, using tissue collected from immature pre-emergence spikes from wild type bread wheat cultivar Chinese Spring plants. To investigate connections between meiotic recombination and chromatin states in wheat, we also performed ChIP-seq for euchromatic (H3K4me3) and constitutive heterochromatic (H3K9me2 and H3K27me1) marks, and mapped genome-wide nucleosome occupancy via micrococcal nuclease sequencing (MNase-seq) using leaf tissue from Chinese Spring.
Project description:Bread wheat is allohexaploid with 16 Gb genome, which has large intergenic region with abundant TEs and regulatory sequences . Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide the first systematic epigenomic map for functional annotation of the allohexaploid wheat genome.
Project description:Allohexaploid bread wheat (Triticum aestivum, L.) provides ~ 20% of calories consumed by humans. Hitherto lack of genome sequence for the three homoelogous and highly similar bread wheat genomes (A, B and, D) impeded expression analysis of the grain transcriptome. We used novel genome information to analyze the cell type specific expression of homeologous genes in the developing wheat grain.
Project description:Root traits are significant targets for breeding stress-resilient and high-yielding wheat genotypes under climatic fluctuations. However, root transcriptome analysis is usually obscured due to challenges in root research. We performed transcriptome analysis of thirty bread wheat cultivars using RNA-seq to investigate the diversity and expression of root system architecture (RSA) related transcripts. We examined the expression patterns of these transcripts in both root and leaf tissues and found that various transcripts are root-specific which could be manipulated for desirable root traits.The presented RNA-seq datasets provide valueable source for identification of genes involved in various biological processes under varying climatic conditions.
Project description:One week old bread wheat plantlets were artifically infected with Puccinia triticinae (the causal organism of wheat leaf rust) and samples were collected after one week from infection. Samples were collected after one week from infection, non infected as well. Two loacl varities were used MISR 1 and GEMMZA 7.
Project description:Bread aroma is the principal characteristic perceived by the consumer yet it is mostlydisregarded in the product chain. The main aim of this study was to evaluate the potential toinclude bread aroma as a new target criterion into the wheat product chain. The objectivesof our study were to (i) quantify the influence of genetic versus environmental factors onthe bread aroma and quality characteristics, (ii) evaluate whether bread baked from modernwheat varieties differ in terms of aroma from those baked from old varieties and (iii) comparegenomic and metabolomic approaches for their efficiency to predict bread aroma and qualitycharacteristics in a wheat breeding program. Agronomic characters as well as bread aroma andquality traits were assessed for 18 old and 22 modern winter wheat varieties evaluated at up tothree locations in Germany. Metabolite profiles of all 120 flour samples were collected using a7200 GC-QTOF. Considerable differences in the adjusted entry means for all examined breadaroma and quality characters were observed. For aroma, which was rated on a scale from 1 to9, the adjusted entry means varied for the 40 wheat varieties between 3 and 8. In contrast,the aroma of bread prepared from old and modern wheat varieties did not differ significantly(P<0.05). Bread aroma was not significantly (P<0.05) correlated with grain yield, whichsuggested that it is possible to select for the former character in wheat breeding programswithout reducing the gain of selection for the latter. Finally, we have shown that bread aromacan be better predicted using a combination of metabolite and SNP genotyping profiles insteadof the SNP genotyping profile only. In conclusion, we have illustrated possibilities to increasethe quality of wheat for consumers in the product chain.
Project description:We performed RNA-Seq experiments on 4 replicate samples from growth condition of hexoploid bread wheat (Chinese Spring) to construct a transcriptional map on meiotic conditions. Library preparation was preformed according to TruSeq RNA Sample Preparation Guide (Illumina, Part # 15008136 REV. A). Reagents were taken from the Illumina TruSeq Sample Prep Kit -Set A (Illumina, CAT # RS-930-2001). Samples were sequenced with 4 samples per lane on 2x100bp.