Project description:Here we reported the Jmjd2a and Jmjd2c are co-targeted at the essential genes of mouse activating B220+ B cells. B cell activation programs transcription networks that subsequently induce plasma cell differentiation, but how histone demethylases participating in this process remains elusive. We found that histone demethylases Jmjd2a and Jmjd2c are expressed in Tfh-mediated signals stimulated mouse spelenic B220+ B cells. we then perform ChIP-seq by using anti-Jmjd2a and anti-Jmjd2c antibodies to identified the genes regulated by Jmjd2a and Jmjd2c and required for correct activation.
Project description:Base on the privious studie from our lab, we found the histone demethylases, Jmjd2a and Jmjd2c are upregulated in stimulated primary B cells, depletion of Jmjd2a and Jmjd2c in stimulated B cells resulted in failed activation of B cells. Owimg to the essential functions of Jmjd2a and Jmjd2c, We here applied loss of function approach, such as siRNA, to study the how Jmjd2a and Jmjd2c regulate plasma cell differentiation.
Project description:We have mapped transcriptional changes after depletion of the histone demethylases JMJD2C/GASC1/KDM4C and JMJD2A/KDM4A alone or in combination in the esophageal squamous carcinoma cell line, KYSE150. The KYSE150 cell line contains an amplification of the JMJD2C locus. RNA was extracted from KYSE150 cells transfected with shRNAs targeting JMJD2C and/or JMJD2A. The experiment was performed in triplicates and expression levels analyzed using Affymetrix microarrays.
Project description:We have characterized the role of the Jmjd2/Kdm4 proteins in embryonic stem cell (ESC) biology, histone methylation and gene regulation. The Jmjd2 proteins are H3K9/H3K36 histone demethylases and three Jmjd2 family members are expressed in ESCs: Jmjd2a/Kdm4a, Jmjd2b/Kdm4b and Jmjd2c/Kdm4c/Gasc1. We find that specifically Jmjd2a and Jmjd2c exert redundant functions, which are essential for ESC self-renewal and early embryonic development. ChIP-seq studies show that Jmjd2a and Jmjd2c both localize to H3K4me3 marked regions, where they have general and widespread roles preventing the accumulation of especially H3K9me3, but also H3K36me3. Jmjd2 catalytic activity is required for ESC maintenance, and increased H3K9me3 levels in knockout ESCs compromise the expression of several Jmjd2a/c targets, including genes that are important for ESC self-renewal. Thus, continual removal of H3K9 promoter methylation by Jmjd2 demethylases represents a novel mechanism ensuring transcriptional competence and stability of the pluripotent cell identity.
Project description:We have characterized the role of the Jmjd2/Kdm4 proteins in embryonic stem cell (ESC) biology, histone methylation and gene regulation. The Jmjd2 proteins are H3K9/H3K36 histone demethylases and three Jmjd2 family members are expressed in ESCs: Jmjd2a/Kdm4a, Jmjd2b/Kdm4b and Jmjd2c/Kdm4c/Gasc1. We find that specifically Jmjd2a and Jmjd2c exert redundant functions, which are essential for ESC self-renewal and early embryonic development. ChIP-seq studies show that Jmjd2a and Jmjd2c both localize to H3K4me3 marked regions, where they have general and widespread roles preventing the accumulation of especially H3K9me3, but also H3K36me3. Jmjd2 catalytic activity is required for ESC maintenance, and increased H3K9me3 levels in knockout ESCs compromise the expression of several Jmjd2a/c targets, including genes that are important for ESC self-renewal. Thus, continual removal of H3K9 promoter methylation by Jmjd2 demethylases represents a novel mechanism ensuring transcriptional competence and stability of the pluripotent cell identity.
Project description:We have mapped transcriptional changes after depletion of the histone demethylases JMJD2C/GASC1/KDM4C and JMJD2A/KDM4A alone or in combination in the esophageal squamous carcinoma cell line, KYSE150. The KYSE150 cell line contains an amplification of the JMJD2C locus.
Project description:We identified genes expressed in mouse liver that are regulated by Cux2, a highly female-specific liver transcription factor whose expression is regulated by sex-dependent plasma GH patterns. Using siRNA to knockdown Cux2 expression in female liver, we show that female specific genes are predominantly repressed by Cux2 knockdown. In contrast, similar numbers of male-biased genes are repressed as are induced by Cux2 knockdown. A scrambled, non-specific siRNA was used as a control. (Published in: TL Conforto et al 2012, Mol Cell Biol. 2012, 32:4611-4627. PubMed PMID: 22966202; PMCID: PMC3486175)
Project description:We identified genes expressed in mouse liver that are regulated by Cux2, a highly female-specific liver transcription factor whose expression is regulated by sex-dependent plasma GH patterns. Using adenovirus to overexpress Cux2 (Adeno-Cux2) in male liver, we show that Cux2 represses ~35% of male-biased genes and induces/de-represses ~35% of female-biased genes. Adeno-CMV was used as a control for adenoviral infection. (Published in: TL Conforto et al 2012, Mol Cell Biol. 2012, 32:4611-4627. PubMed PMID: 22966202; PMCID: PMC3486175)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.