Project description:Wounding is a primary trigger of organ regeneration but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study we combined the transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis thaliana. Our time-course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes that can be categorized into five clusters with distinct temporal patterns. Gene ontology analyses uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signalling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin has major contribution in wound-induced callus formation. We further demonstrate that type-A ARABIDOPSIS RESPONSE REGULATOR (ARR)-mediated cytokinin signalling regulates the expression of CYCLIN D3;1 (CYCD3;1) and mutations in CYCD3;1 and its homologs CYCD3;2-3 cause defects in callus formation. Our transcriptome data, in addition, showed that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 (ERF115) and PLETHORA3 (PLT3), PLT5, PLT7 in wound-induced callus formation. Together, this study provides novel mechanistic insights into how wounding reactivates cell proliferation during callus formation.
Project description:Transcriptional profiling of age-related change of callus formation capability in Arabidopsis hypocotyls Organogenesis in vitro consists of many aspects such as phytohormone perception, dedifferentiation of differentiated cell to acquire organogenic competence, and re-entry of quiescent cells into cell cycle. In this study, we established an in vitro experimental system to study the age-dependent callus formation capacity in Arabidopsis. Interestingly, mature (35- to 38-day-old) hypocotyl explants exhibited better callus-forming potential than that of juvenile (7- to 10-day-old), determined by callus growth rates. To explore genome-wide expression changes underlying the phenomenon of age-dependent callus formation, a transcriptome-based analysis was performed. Gene expression profiling indicated that age-dependent callus formation capacity was associated with changes in phytohormone (auxins, cytokinins, abscisic acid, brassinosteroids and gibberellins) homeostasis, epigenetic mechanism and the cell cycle regulation. Besides, we identified two groups of genes involved in age-dependent callus formation capacity: (1) positive regulatory and (2) negative regulatory categories, i.e. genes that were significantly up- or down-regulated during callus formation derived from mature explants, respectively. One gene encoding DNA-binding protein (VARIANT IN METHYLATION 1, VIM1) belonging to the positive regulatory category was selected for functional analysis and assessment of age-dependent callus formation capacity. Indeed, vim1 reduced the efficiency of callus formation in mature explants, but not in juvenile. The result suggests that VIM1 plays an important role in regulating age-dependent callus formation capacity. Taken together, the investigation will help to better understand the molecular regulatory mechanism of age-dependent callus formation. Comparison of young and mature Arabidopsis hypocotyls either with or without auxin treatment for 1 day
Project description:Transcriptional profiling of age-related change of callus formation capability in Arabidopsis hypocotyls Organogenesis in vitro consists of many aspects such as phytohormone perception, dedifferentiation of differentiated cell to acquire organogenic competence, and re-entry of quiescent cells into cell cycle. In this study, we established an in vitro experimental system to study the age-dependent callus formation capacity in Arabidopsis. Interestingly, mature (35- to 38-day-old) hypocotyl explants exhibited better callus-forming potential than that of juvenile (7- to 10-day-old), determined by callus growth rates. To explore genome-wide expression changes underlying the phenomenon of age-dependent callus formation, a transcriptome-based analysis was performed. Gene expression profiling indicated that age-dependent callus formation capacity was associated with changes in phytohormone (auxins, cytokinins, abscisic acid, brassinosteroids and gibberellins) homeostasis, epigenetic mechanism and the cell cycle regulation. Besides, we identified two groups of genes involved in age-dependent callus formation capacity: (1) positive regulatory and (2) negative regulatory categories, i.e. genes that were significantly up- or down-regulated during callus formation derived from mature explants, respectively. One gene encoding DNA-binding protein (VARIANT IN METHYLATION 1, VIM1) belonging to the positive regulatory category was selected for functional analysis and assessment of age-dependent callus formation capacity. Indeed, vim1 reduced the efficiency of callus formation in mature explants, but not in juvenile. The result suggests that VIM1 plays an important role in regulating age-dependent callus formation capacity. Taken together, the investigation will help to better understand the molecular regulatory mechanism of age-dependent callus formation.
Project description:Unlike most animal cells, plant cells can easily regenerate new tissues from a wide variety of organs when properly cultured. The common elements that provide varied plant cells with their remarkable regeneration ability are still largely unknown. Here we describe the initial process of Arabidopsis in vitro regeneration, where a pluripotent cell mass termed callus is induced. We demonstrate that callus resembles the tip of a root meristem, even if it is derived from aerial organs such as petals, which clearly shows that callus formation is not a simple reprogramming process backwards to an undifferentiated state as widely believed. Furthermore, callus formation in roots, cotyledons and petals is blocked in mutant plants incapable of lateral root initiation. It thus appears that the ectopic activation of a lateral root development program is a common mechanism in callus formation from multiple organs.
Project description:Arabidopsis thaliana plant expressing 35S:WIND1 shows callus-like morphology without hormone treatment. Transcriptomes of the callus-like cell expressing 35S:WIND1, callus of T87 cultured cell, 2,4-D-induced callus and control seedling plant were compared by Agilent microarray.