Project description:Female Aedes aegypti mosquitoes impose a severe global public health burden as primary vectors of multiple viral and parasitic pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges, like intense droughts and intermittent precipitation, which create unpredictable and suboptimal conditions for the egg-laying step of their reproductive cycle. Aedes aegypti mosquitoes nonetheless show remarkable reproductive resilience, but how they achieve this is unknown. Here we show that under drought-like conditions simulated in the laboratory, mated, blood-fed Aedes aegypti females carrying mature eggs retain them in their ovaries for extended periods, while maintaining the viability of these eggs until they can be deposited in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes – here named tweedledee and tweedledum – that show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. Using loss-of-function mutagenesis to disrupt both genes, we show that, tweedledee and tweedledum, which encode secreted proteins, are specifically required for extended retention of viable eggs, such as during intermittent precipitation or drought. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with “insurance” to, when contextually appropriate, flexibly extend their reproductive sequence without losing reproductive capacity, thus allowing this species to exploit diverse and unpredictable habitats.
Project description:Female Aedes aegypti mosquitoes impose a severe global public health burden as primary vectors of multiple viral and parasitic pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges, like intense droughts and intermittent precipitation, which create unpredictable and suboptimal conditions for the egg-laying step of their reproductive cycle. Aedes aegypti mosquitoes nonetheless show remarkable reproductive resilience, but how they achieve this is unknown. Here we show that under drought-like conditions simulated in the laboratory, mated, blood-fed Aedes aegypti females carrying mature eggs retain them in their ovaries for extended periods, while maintaining the viability of these eggs until they can be deposited in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes – here named tweedledee and tweedledum – that show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. Using loss-of-function mutagenesis to disrupt both genes, we show that, tweedledee and tweedledum, which encode secreted proteins, are specifically required for extended retention of viable eggs, such as during intermittent precipitation or drought. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with “insurance” to, when contextually appropriate, flexibly extend their reproductive sequence without losing reproductive capacity, thus allowing this species to exploit diverse and unpredictable/chaotic/changing habitats.
Project description:We report the RNA-seq based analyses of the transcriptional changes in the Aedes aegypti midguts transcriptome 24,48 hours after blood feeding with or without 250 um ferric ammonium citrate.
Project description:Aedes aegypti mosquitoes infect hundreds of millions of people each year with dangerous viral pathogens including dengue, yellow fever, Zika, and chikungunya. Progress in understanding the biology of this insect, and developing tools to fight it, depends on the availablity of a high-quality genome assembly. Here we use DNA proximity ligaton (Hi-C) and Pacific Biosciences long reads to create AaegL5 - a highly contiguous A. aegypti reference.
Project description:Investigation of whole genome gene expression level changes during a 44 hour time period in Aedes aegypti observed under light/dark and constant dark conditions. This is a 12-plex high defination NimbleGen array design. The Higgs White Eye (Wh) strain of Aedes aegypti was investigated for rhythmic expression during the light/dark phase and constant darkness. Samples were collected every 4 hours for 44 hours in each treatment, and RNA collected from whole head tissue.