Project description:Halophilic microorganisms have long been known to survive within the brine inclusions of salt crystals, as evidenced by their pigmentation. However, the molecular mechanisms allowing this survival has remained an open question for decades. While protocols for the surface sterilization of halite (NaCl) have enabled isolation of cells and DNA from within halite brine inclusions, “-omics” based approaches have faced two main technical challenges: (1) removal of all contaminating organic biomolecules (including proteins) from halite surfaces, and (2) performing selective biomolecule extractions directly from cells contained within halite brine inclusions with sufficient speed to avoid modifications in gene expression during extraction. In this study, we present methods to resolve these two technical challenges. In addition, we apply these methods to perform the first examination of the early acclimation of a model haloarchaeon (Halobacterium salinarum NRC-1) to halite brine inclusions. Examinations of the proteome of Halobacterium cells two months post-evaporation revealed a high degree of similarity with stationary phase liquid cultures, but with a sharp down-regulation of ribosomal proteins. Low quantities of RNA from halite brine inclusions corroborate the hypothesis of low transcriptional and translational activities. While proteins for central metabolism were part of the shared proteome between liquid cultures and halite brine inclusions, proteins involved in cell mobility (archaellum, gas vesicles) were either absent or less abundant in halite samples. Proteins unique to cells within brine inclusions included transporters, suggesting modified interactions between cells and the surrounding brine inclusions microenvironment. The methods and hypotheses presented here enable future studies of the survival of halophiles in both culture model and natural halite systems.
2023-03-10 | PXD037167 | Pride
Project description:Halophilic Microorganisms by Tamarisk Enhances
Project description:Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) from TrmB in the halophilic archaeon Haloarcula hispanica in the presence and absense of glucose.
Project description:These methylation data generated using EM-seq for all the NAM lines (as a part of the genome assembly project of NAM by the NAM Consortium Group). B73=project ID PRJEB32225/ERP114875; B73Ab10=project ID PRJEB35367/ERP118403; the rest of the NAMs=project ID PRJEB31061/ERP113571
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).