Project description:We profiled transcriptomes from Cnot6l deadenylase knock-out mouse GV oocytes, MII eggs and 1-cell zygotes in order to analyse its function during the oocyte-to-embryo (OET) transition. Transcriptome of wild-type golden hamster GV oocytes was also profiled.
Project description:Oocyte maturation refers to oocytes at the germinal vesicle stage progressing into metaphase II (MII) stage of development. Even though numerous studies have shown key genes and potential important signalling cascades, which drive the GV to MII transition, a system-wide analysis of underlying differences at gene level and especially at transcript level between the two developmental stages of the oocyte is still lacking. For this, we profiled and analysed RNA from pig oocytes across meiotic maturation (GV, MII and damaged, n=15). We detected 22,516 genes for each sample across meiotic maturation. Principal Component analysis of the data clustered the samples in three stages of development (GV, MII and damaged). Differential expression of genes between the three stages will then be used to delineate the pathways which are up-/down-regulated during these developmental stages. Besides, differential transcript usage will be used to identify the difference of oocytes at distinct developmental stages at isoform level, which might be ignored by traditional differential gene expression analysis.
Project description:The bidirectional communication between bovine oocytes and CCs is vital for functioning and development of both cell types. We used microarray to identify genes which are differentially expressed between germinal vesicle (GV)- and metaphase II (MII)-stage oocytes and CCs and those differentially expressed when oocytes mature with or without the other. We also identified genes differentially expressed between CCs at GV and MII stages.
Project description:The bidirectional communication between bovine oocytes and CCs is vital for functioning and development of both cell types. We used microarray to identify genes which are differentially expressed between germinal vesicle (GV)- and metaphase II (MII)-stage oocytes and CCs and those differentially expressed when oocytes mature with or without the other. We also identified genes differentially expressed between CCs at GV and MII stages. Slaughterhouse ovaries were collected and GV-stage cumulus oocyte complexes (COCs) were aspirated. Different stages and types of oocytes and CCs were used for total RNA isolation and hybridisation on Affymetrix microarray.
Project description:Developmental competences of oocytes derived from prepubertal heifers are lower than those derived from adult counterparts. The objective of this study was to identify a range of genes associated with reduced oocyte competence that are differentially expressed between adult versus prepubertal donors. Microarray experiments were conducted using total RNA isolated from GV and MII stages oocytes collected from adult and prepubertal animals using Affymetrix GeneChip Bovine Genome Array containing 24,072 probe sets representing over 23,000 transcripts. A total of 549 and 333 genes were differentially expressed between prepubertal versus adult bovine MII and GV stages oocytes respectively. Out of these, 312 and 176 genes were up-regulated, while 237 and 157 were down-regulated in prepubertal when compared with adult MII and GV oocytes respectively. Ontological classification of the differentially expressed genes revealed that up-regulated genes in adult oocytes were involved in signal transduction, regulation of transcription DNA-dependent, and transport. Results from the present study indicated that significant number of genes were differentially expressed (>2-fold, p<0.01) between the two groups. Thus the decreased developmental competence of oocytes from prepubertal heifers may be induced due to difference in gene expression abundance as observed in our study. In conclusion, transcript abundance analyses of oocytes using microarray approach have been carried out in bovine and several other species. However, to our knowledge, this is the first study carried out to examine genes expression differential abundance in oocytes derived from perpubertal versus adult Japanese Black Cattle. Bovine 4b PP biological rep1, Bovine 78b PP biological rep2, Bovine 79 PP biological rep3 represents GV stage oocytes derived from Prepubertal (PP) heifer group, while Bovine 74b A biological rep1, Bovine 80b A biological rep2, Bovine 81 A biological rep3 represents GV stage oocytes derived from Adult (A) cow group. Bovine 7 PP biological rep1, Bovine 53 PP biological rep2, Bovine 57 PP biological rep3 represents MII stage oocytes derived from Prepubertal heifer group, while Bovine 59 A biological rep1, Bovine 70 A biological rep2, Bovine 71 A biological rep3 represents MII stage oocytes from Adult cow group.
Project description:In this study, we used tandem mass tag (TMT)-based quantitative approach to acquire proteomic profiles of porcine GV and MII oocytes and MII oocytes vitrified at the GV stage.
Project description:We analyzed the functions of BTG family proteins in maternal mRNA degradation in mouse oocytes. By comparing the degradation of transcripts in WT oocytes and KO oocytes, we are able to know the defects in maternal mRNA clearance in BTG4-deleted oocytes, and identified the BTG4 target genes in oocyte cyplasmic maturation. 2 WT oocyte samples at GV stage, 2 WT oocyte samples at MII stage, 2 Btg4-/- oocyte samples at GV stage and 2 Btg4-/- oocyte samples at MII stage?2 WT embryo samples at zygote stage, 2 WT embryo samples at 2-cell stage, 2 Btg4-/- embryo samples at zygote stage and 2 Btg4-/- embryo samples at 2-cell stage , and a WT GV oocyte, a WT MII oocyte, a Erk-/- GV oocyte and a Erk-/- MII oocyte are performed RNA sequencing.