Project description:The Pacific white shrimp (Litopenaeus vannamei), one of the most widely cultured shrimp species in the world, usually suffered from chilling stress in China. In order to reveal inner proteomics mechanism of chilling tolerance, we conducted a proteomic analysis on two contrasting shrimp cultivars, namely, chilling-tolerant GH2 and chilling-sensitive GH1 under normal temperature 28°C, chilling stress 16°C, and 16°C recovered to 28°C, respectively.
Project description:Here we used microarrays to characterize changes in global gene expression in the hepatopancreas of Pacific white shrimp, Litopenaeus vannamei, exposed to short term (4 h) hypoxia (H) or hypercapnic hypoxia (HH) or long term (24 h) H or HH, compared to animals in air-saturated water (normoxia). The transcriptomes of crustaceans exposed to low O2 and high CO2 contained both shared and treatment-specific signature genes (q ≤ 0.01, FC ≥ 1.5), with shifts characteristic of metabolic depression rather than anaerobic metabolism. Down-regulated signature genes dominated the transcript profile in three of the four treatments (H 4 h, H 24 h, 4 h HH); many of these genes were involved in amino acid or RNA metabolism or in translation, including several tRNA synthetases. Unique patterns of gene expression such as increased lipid metabolism and hemocyanin synthesis (H 24 h) and initiation of apoptosis (24 h HH) were tied to specific treatments. This work contributes insight to the effects that human perturbations might have on estuarine organisms, and the importance of examining the impacts of environmentally relevant combinations of hypoxia and hypercapnia on estuarine populations.
Project description:The transcriptomic response of two strains of the Pacific whiteleg shrimp, different in their resistance to Taura Syndrome Virus (TSV), in response to infection with TSV and Yellow Head Virus (YHV). Changes in gene expression in the shrimp’s hepatopancreas were assessed using a cDNA microarray containing 2,469 putative unigenes. The patterns of gene expression between the shrimp strains were considerably similar, except for the more advanced stages of Taura Syndrome. Between the different treatments approximately 250 genes were differently expressed. The most advanced stages of YHV infection showed the highest number of differently expressed genes. During infection there were profound changes in the expression of genes related to lipid and protein metabolism, cellular trafficking, immune defense and stress response. Keywords: Disease state analysis, disease resistance
Project description:Here we used microarrays to characterize changes in global gene expression in the hepatopancreas of Pacific white shrimp, Litopenaeus vannamei, exposed to short term (4 h) hypoxia (H) or hypercapnic hypoxia (HH) or long term (24 h) H or HH, compared to animals in air-saturated water (normoxia). The transcriptomes of crustaceans exposed to low O2 and high CO2 contained both shared and treatment-specific signature genes (q M-bM-^IM-$ 0.01, FC M-bM-^IM-% 1.5), with shifts characteristic of metabolic depression rather than anaerobic metabolism. Down-regulated signature genes dominated the transcript profile in three of the four treatments (H 4 h, H 24 h, 4 h HH); many of these genes were involved in amino acid or RNA metabolism or in translation, including several tRNA synthetases. Unique patterns of gene expression such as increased lipid metabolism and hemocyanin synthesis (H 24 h) and initiation of apoptosis (24 h HH) were tied to specific treatments. This work contributes insight to the effects that human perturbations might have on estuarine organisms, and the importance of examining the impacts of environmentally relevant combinations of hypoxia and hypercapnia on estuarine populations. L. vannamei were exposed for 4 or 24 hours to one of the following conditions: normoxia, hypoxia or hypercapnic hypoxia. Hepatopancreas tissue from individual animals was dissected, total RNA extracted, labelled and hybridized to oligonucleotide microarrays with probes for 21,864 L. vannamei unigenes. Treatments were repeated until a total of 7 biological replicates was obtained for each time:treatment combination, except for the 24 h normoxia group, represented by 6 replicates.
Project description:Acute hepatopancreatic necrosis disease (AHPND) is a shrimp farming disease, caused by a pathogenic Vibrio parahaemolyticus carrying a plasmid encoding Vp_PirAB-like toxin (VpAHPND). Whiteleg shrimp, Litopenaeus vannamei were fed food pellets containing formalin-killed VpAHPND (FKC-VpAHPND) to select for toxin resistance. To identify genes associated with Vp_PirAB-like toxin resistance, total RNA was sequenced to identify differentially expressed genes (DEGs) in the stomach and hepatopancreas among surviving shrimp (sur-FKC), AHPND-infected shrimp (Vp-inf) and normal shrimp (control). From a total of 79,591 genes, 194 and 224 DEGs were identified in the stomach and hepatopancreas transcriptomes, respectfully. The expressions of DEGs were validated by qPCR of ten genes. Only one gene, a gene homologous to L vannamei anti-lipopolysaccharide factor AV-R isoform (LvALF AV-R), was expressed significantly more strongly in sur-FKC than in the other groups. The association of LvALF AV-R expression and toxin resistance was affirmed from the surviving shrimp in a second-trial of FKC-VpAHPND feeding. These results suggest that LvALF AV-R may be involved in shrimp defense mechanisms against Vp_PirAB-like toxin virulence.
Project description:The transcriptomic response of two strains of the Pacific whiteleg shrimp, different in their resistance to Taura Syndrome Virus (TSV), in response to infection with TSV and Yellow Head Virus (YHV). Changes in gene expression in the shrimp’s hepatopancreas were assessed using a cDNA microarray containing 2,469 putative unigenes. The patterns of gene expression between the shrimp strains were considerably similar, except for the more advanced stages of Taura Syndrome. Between the different treatments approximately 250 genes were differently expressed. The most advanced stages of YHV infection showed the highest number of differently expressed genes. During infection there were profound changes in the expression of genes related to lipid and protein metabolism, cellular trafficking, immune defense and stress response. Keywords: Disease state analysis, disease resistance There were 5 biological replicates for each of the groups in this experiment. Also, two strains of Litopenaeus vannamei were used: a strain resistant to TSV and a strain susceptible to TSV (Kona line). The treatments consisted of injecting both strains with 60mL of a shrimp extract made from shrimp previously injected with either a SPF shrimp extract (1x10-4), Taura Syndrome Virus (1x10-5) or Yellow Head Virus (1x10-4). The 2 initial control groups were composed of hepatopancreas samples from both strains prior the injections. Samples were also collected from at days 1 and 2 from both strains from the 3 different treatments (control, TSV and YHV).