Project description:The Noda epileptic rat (NER) exhibits generalized tonic–clonic seizures (GTCS). A genetic linkage analysis demonstrated two GTCS-associated loci, Ner1 on Chr 1 and Ner3 on Chr 5. In single-locus congenic lines, neither wild-type Ner1 nor Ner3 allele suppressed GTCS, but both wild-type alleles suppressed GTCS when they were combined in double-locus congenic lines. Global expression analysis showed that Cckbr and St5 locating within Ner1 and Phf24 locating within Ner3 were significantly downregulated. De novo BAC sequencing detected an insertion of an endogenous retrovirus sequence in intron 2 of the Phf24 gene in the NER genome. PHF24 protein was almost absent in the NER brain. It has been known that the Phf24 gene encodes Gαi-interacting protein which is involved in GABAB receptor signaling pathway. Together, we concluded that Cckbr, St5, and Phf24 were strong candidate genes for GTCS in NER.
Project description:Analysis of LBNF1 rat testes from controls, containing both somatic and all germ cell types and from irradiated rats in which all cells germ cells except type A spermatgogonia are eliminated. Results provide insight into distinguishing germ and somatic cell genes and identification of somatic cell genes that are upregulated after irradiation.
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.
Project description:Using microarray analyses and subsequent verification by RT-PCR, we studied the changes in gene expression in the inferior colliculus after an ictal event in one models of audiogenic epilepsy, Wistar audigenic rat (WAR). WAR is a genetically selected strain susceptible to audiogenic seizures that was inbred in the School of Medicine of Ribeirão Preto (Brazil) beginning in 1990. This strain is a model of audiogenic idiopathic epilepsy that develops tonic-clonic generalized seizures. Genetic animal models of epilepsy are an important tool for further understanding the basic cellular mechanisms underlying epileptogenesis and for developing novel antiepileptic drugs. We conducted a comparative study of gene expression in the inferior colliculus, a nucleus that triggers audiogenic seizures, using two animal models, the Wistar audiogenic rat (WAR) and the genetic audiogenic seizure hamster (GASH:Sal). For this purpose, both models were subjected to auditory stimulation, and 60 minutes after stimulation, the inferior colliculi were collected. As a control, intact Wistar rats and Syrian hamsters were subjected to identical stimulation and tissue preparation protocols to those performed on the experimental animals.
Project description:Neither the molecular basis of the pathologic tendency of neuronal circuits to generate spontaneous seizures (epileptogenicity) nor anti-epileptogenic mechanisms that maintain a seizure-free state are well understood. Here, we performed transcriptomic analysis in the intrahippocampal kainate model of temporal lobe epilepsy in rats using both Agilent and Codelink microarray platforms to characterize the epileptic processes. The experimental design allowed subtraction of the confounding effects of the lesion, identification of expression changes associated with epileptogenicity, and genes upregulated by seizures with potential homeostatic anti-epileptogenic effects. Using differential expression analysis, we identified several hundred expression changes in chronic epilepsy, including candidate genes associated with epileptogenicity such as Bdnf and Kcnj13. To analyze these data from a systems perspective, we applied weighted gene co-expression network analysis (WGCNA) to identify groups of co-expressed genes (modules) and their central (hub) genes. One such module contained genes upregulated in the epileptogenic region, including multiple epileptogenicity candidate genes, and was found to be involved the protection of glial cells against oxidative stress, implicating glial oxidative stress in epileptogenicity. Another distinct module corresponded to the effects of chronic seizures and represented changes in neuronal synaptic vesicle trafficking. We found that the network structure and connectivity of one hub gene, Sv2a, showed significant changes between normal and epileptogenic tissue, becoming more highly connected in epileptic brain. Since Sv2a is a target of the antiepileptic levetiracetam, this module may be important in controlling seizure activity. Bioinformatic analysis of this module also revealed a potential mechanism for the observed transcriptional changes via generation of longer alternatively polyadenlyated transcripts through the upregulation of the RNA binding protein HuD. In summary, combining conventional statistical methods and network analysis allowed us to interpret the differentially regulated genes from a systems perspective, yielding new insight into several biological pathways underlying homeostatic anti-epileptogenic effects and epileptogenicity. Four condition experiment with five samples per condition. The samples include right dentate gyrus from animals with seizures, left dentate gyrus from animals with seizures, right dentate gyrus from animals without seizures, and left dentate gyrus from animals without seizures. A dye swap was included.
Project description:Neither the molecular basis of the pathologic tendency of neuronal circuits to generate spontaneous seizures (epileptogenicity) nor anti-epileptogenic mechanisms that maintain a seizure-free state are well understood. Here, we performed transcriptomic analysis in the intrahippocampal kainate model of temporal lobe epilepsy in rats using both Agilent and Codelink microarray platforms to characterize the epileptic processes. The experimental design allowed subtraction of the confounding effects of the lesion, identification of expression changes associated with epileptogenicity, and genes upregulated by seizures with potential homeostatic anti-epileptogenic effects. Using differential expression analysis, we identified several hundred expression changes in chronic epilepsy, including candidate genes associated with epileptogenicity such as Bdnf and Kcnj13. To analyze these data from a systems perspective, we applied weighted gene co-expression network analysis (WGCNA) to identify groups of co-expressed genes (modules) and their central (hub) genes. One such module contained genes upregulated in the epileptogenic region, including multiple epileptogenicity candidate genes, and was found to be involved the protection of glial cells against oxidative stress, implicating glial oxidative stress in epileptogenicity. Another distinct module corresponded to the effects of chronic seizures and represented changes in neuronal synaptic vesicle trafficking. We found that the network structure and connectivity of one hub gene, Sv2a, showed significant changes between normal and epileptogenic tissue, becoming more highly connected in epileptic brain. Since Sv2a is a target of the antiepileptic levetiracetam, this module may be important in controlling seizure activity. Bioinformatic analysis of this module also revealed a potential mechanism for the observed transcriptional changes via generation of longer alternatively polyadenlyated transcripts through the upregulation of the RNA binding protein HuD. In summary, combining conventional statistical methods and network analysis allowed us to interpret the differentially regulated genes from a systems perspective, yielding new insight into several biological pathways underlying homeostatic anti-epileptogenic effects and epileptogenicity. Four condition experiment with five samples per condition. The samples include right dentate gyrus from animals with seizures, left dentate gyrus from animals with seizures, right dentate gyrus from animals without seizures, and left dentate gyrus from animals without seizures.