Project description:Prostate cancer cells (PC3) were treated with purified human recombinant CRISP3 protein or vehicle control for 4 hours before whole cell protein extraction
Project description:Prostate cancer is the second most occurring cancer in men worldwide, and with the advances made with screening for prostate-specific antigen, it has been prone to early diagnosis and over-treatment. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. The model includes pathways such as androgen receptor, MAPK, Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH, the cell cycle, the epithelial-mesenchymal transition (EMT), apoptosis and DNA damage pathways. The final model accounts for 133 nodes and 449 edges. We applied a methodology to personalise this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients, using TCGA and GDSC datasets.