Project description:The Saccharomyces cerevisae RAD3 gene is homolog of human XPD, an essential gene encoding a DNA helicase of the TFIIH complex involved in both nucleotide excision repair (NER) and transcription. Mutant alleles of RAD3 have been identified (rad3-101 and rad3-102) that have partial defects in DNA repair associated with a strong hyper-recombination (hyper-Rec) phenotype. Previous studies showed that the hyper-Rec phenotype associated with rad3-101 and rad3-102 can be explained as a consequence of persistent single-stranded DNA gaps that are converted to recombinogenic double-strand breaks (DSBs) by replication. We have further characterized these events using a system in which the reciprocal products of mitotic recombination between homologs are recovered as red and white sectored colonies. Both rad3-101 and rad3-102 elevate the frequency of sectored colonies about 100-fold. Subsequent mapping of these events shows that three-quarters of crossovers between homologs induced in hyper-Rec rad3 mutants reflect DSBs formed in at the same positions in both sister chromatids (double sister-chromatid breaks, DSCBs). The remainder reflects DSBs formed in single chromatids (single chromatid breaks, SCBs). The ratio of DSCBs to SCBs is similar to that observed for spontaneous recombination events in wild-type cells. In addition to examining crossovers on chromosome V, we mapped 216 unselected genomic alterations throughout the genome including crossovers, gene conversions, deletions, and duplications. We found a significant association between the location of these recombination events and regions with elevated gamma-H2AX. In addition, there was a hotspot for deletions and duplications at the IMA2 and HXT11 genes near the left end of chromosome XV. A comparison of these data with our previous analysis of spontaneous mitotic recombination events suggests that a sub-set of spontaneous events in wild-type cells may be initiated by incomplete NER reactions, and that DSCBs, which cannot be repaired by sister-chromatid recombination, are a major source of mitotic recombination between homologous chromosomes.
Project description:In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination.
Project description:Furfural is a potential mutagenic agent. To explore the global effect of furfural on genomic intergrity, chromosomal alterations in 14 furfural-treated isolates of JSC25-1 strain were determined by whole genome SNP microarrays at a resolution about 1kb. Our results showed furfural exposure results in striking elevations of both mitotic recombination and aneuploidy events in yeast.
Project description:Mitotic recombination between homologous chromosomes can lead to loss-of-heterozygosity (LOH), which is an important contributor to human disease. In the current study, a defined double-strand break (DSB) on chromosome IV was used to initiate LOH in a yeast strain with sequence-diverged chromosomes. Associated gene conversion tracts, which reflect the repair of mismatches formed when diverged chromosomes exchange single strands, were mapped using microarrays. LOH events reflected two broken chromosomes, one of which was repaired as a crossover and the other as a noncrossover.
Project description:Two types of RNA:DNA associations can lead to genome instability: the formation of R-loops during transcription and the incorporation of ribonucleotide monophosphates (rNMPs) into DNA during replication. Both ribonuclease (RNase) H1 and RNase H2 degrade the RNA component of R-loops, whereas only RNase H2 can remove one or a few rNMPs from DNA. We performed high-resolution mapping of mitotic recombination events throughout the yeast genome in diploid strains of Saccharomyces cerevisiae lacking RNase H1 (rnh1Δ), RNase H2 (rnh201Δ), or both RNase H1 and RNase H2 (rnh1Δ rnh201Δ). We found little effect on recombination in the rnh1Δ strain, but elevated recombination in both the rnh201Δ and the double-mutant strains; levels of recombination in the double mutant were about 50% higher than in the rnh201 single-mutant strain. An rnh201Δ mutant that additionally contained a mutation that reduces rNMP incorporation by DNA polymerase ε (pol2-M644L) had a level of instability similar to that observed in the presence of wild-type Polε. This result suggests that the elevated recombination observed in the absence of only RNase H2 is primarily a consequence of R loops rather than misincorporated rNMPs.
Project description:We report the genome-wide localization of Sgo1p in mitosis of Saccharomyces cerevisiae using ChIP-seq. The high resolution mapping clearly shows a tripartite domain of Sgo1p in each mitotic chromosome. This domain requires the wildtype tension sensing motif (TSM) of histone H3.
Project description:The DNA double strand breaks (DSBs) that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in budding yeast contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red are important for DSB formation; DSB levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with DSB levels. How axis protein levels influence DSB formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased DSBs and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in DSBs did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote DSB formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, only a small fraction of crossovers that formed at an insert locus required MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local DSB levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.