Project description:To better understand the pathogenesis of AKI-to-CKD transition and specifically the mechanism of kidney atrophy, we compared the kidney response to an identical time of ischemic injury between mice subjected to unilateral ischemia/reperfusion (U-IRI) to induce atrophy and those subjected to unilateral IRI with contralateral nephrectomy (IRI/CL-NX) to induce adaptive repair. We performed single cell RNA-sequencing (scRNA-seq) analyses on day 14 after injury to identify major cell types in the kidney and the differential transcriptional response between the models in each cell type.
Project description:Incomplete repair after acute kidney injury (AKI) is associated with progressive loss of tubular cell function and development of chronic kidney disease (CKD). Here, we compared the kidney single-cell transcriptomes from the mice subjected to either unilateral ischemia-reperfusion kidney injury with contralateral nephrectomy (IRI/CL-NX, in which tubule repair predominates) or unilateral IRI with contralateral kidney intact (U-IRI, in which fibrosis and atrophy predominates) to investigate the mechanism(s) underlying transition to CKD following AKI.
Project description:Lung ischemia-reperfusion (I/R) injury remains one of the common complications after various cardiopulmonary surgeries. I-R injury represents one potentially maladaptive response of the innate immune system which is featured by an exacerbated sterile inflammatory response triggered by tissue damage. Thus, understanding the key components and processes involved in sterile inflammation during lung I-R injury is critical to alter care and extend survival for patients with acute lung injury. We constructed a minipig surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. Lung tissues from minipig with sham operation (one sample), left side lung tissues (the operated side)(one sample) and right side lung tissues (the non-operated side)(one sample) from minipig with lung ischemia-reperfusion were submitted for gene expression array analysis.
Project description:Transcriptome analysis was done after warm renal ischemia-reperfusion injury (IRI) in a rat model. Earlier studies have shown a protective effect of prior unilateral nephrectomy (UNx) against IRI in the remaining, contralateral kidney compared to a non-neprectomized control group. We aimed at identifying the underlying molecular mechanisms. We used the Affymetrix Clariom D array (formerly known as RTA 1.0 st.) Array data was processed in the Affymetrix Console Software.
Project description:Renal recovery following injury relies on cellular regeneration. In the mouse kidney following injury, injured epithelial cells undergoes de-differentiate, proliferate and re-differentiate into functional cells, following a a tightly controlled genetic programme where specific sets of genes are up-regulated. We used microarrays to detail the global programme of gene expression underlying cellular regeneration following injury with or without a HDAC inhibitor, m4PTB, treatment and identified distinct classes of up-regulated genes during this process. Male BALB/c mice underwent 26 minute unilateral ischemia-reperfusion (IR) with contralateral nephrectomy treated with vehicle or 100 mg/kg m4PTB 24 h after inducing renal injury, and kidneys harvested for RNA extraction 12 h later. We sought to obtain kidneys within a similar degree of injury in order to carefully evaluate the effect of m4PTB on expression profiles. To that end, we selected kidneys according to three different criteria of injury: (1) level of serum creatinine at Day1, (2) the level of blood urea nitrogen (BUN) (3) Kim1 expression by qPCR at Day1.5 using haevested kidneys