Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU223 showed significantly inhibited biofilm formation of S. aureus. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU223 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:Data for the manuscript: Genomic and metabolomic analysis of the endophytic fungus Fusarium sp. VM-40 derived from the medicinal plant Vinca minor, authors: Ting He, Xiao Li, Riccardo Iacovelli, Thomas Hackl and Kristina Haslinger
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU 257-1 showed significantly inhibited biofilm formation of E. coli. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU 257-1 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:In this project, the transcriptomic data was obtained from the 6-day and 10-day submerged cultures of Cerrena unicolor sp. 87613 under PDA media, respectively. C.unicolor is reported to be an important medicinal fungus as well as an efficient laccase producer. Interestingly, C.unicolor sp.87613 presented a highest laccase production with ~420 U/mL at fermentation day 6, while the laccase production was reduced by ~27% at fermentation day 10. Therefore, these collected data were used to unveil the potential regulatory mechanism of laccase production. Besides, these transcriptomic data also provide essential data source for a better understanding of C.unicolor in various aspects.
Project description:New endolide-like analogs from the marine sponge-derived-fungus Stachylidium bicolor 293 K04 were mined by MassQL-annotated molecular networking to guide the targeted isolation and planar structure elucidation of new cyclic tetrapeptides.